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ABSTRACT

Convolutional Neural Networks (CNNs) have proven very effective
in image classification and show promise for audio. We use var-
ious CNN architectures to classify the soundtracks of a dataset of
70M training videos (5.24 million hours) with 30,871 video-level la-
bels. We examine fully connected Deep Neural Networks (DNNs),
AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We investigate
varying the size of both training set and label vocabulary, finding that
analogs of the CNNs used in image classification do well on our au-
dio classification task, and larger training and label sets help up to a
point. A model using embeddings from these classifiers does much
better than raw features on the Audio Set [5] Acoustic Event Detec-
tion (AED) classification task.

Index Terms— Acoustic Event Detection, Acoustic Scene Clas-
sification, Convolutional Neural Networks, Deep Neural Networks,
Video Classification

1. INTRODUCTION

Image classification performance has improved greatly with the ad-
vent of large datasets such as ImageNet [6] using Convolutional
Neural Network (CNN) architectures such as AlexNet [1], VGG [2],
Inception [3], and ResNet [4]. We are curious to see if similarly large
datasets and CNNs can yield good performance on audio classifica-
tion problems. Our dataset consists of 70 million (henceforth 70M)
training videos totalling 5.24 million hours, each tagged from a set of
30,871 (henceforth 30K) labels. We call this dataset YouTube-100M.
Our primary task is to predict the video-level labels using audio in-
formation (i.e., soundtrack classification). Per Lyon [7], teaching
machines to hear and understand video can improve our ability to
“categorize, organize, and index them”.

In this paper, we use the YouTube-100M dataset to investigate:
how popular Deep Neural Network (DNN) architectures compare on
video soundtrack classification; how performance varies with differ-
ent training set and label vocabulary sizes; and whether our trained
models can also be useful for AED.

Historically, AED has been addressed with features such as
MFCCs and classifiers based on GMMs, HMMs, NMF, or SVMs
[8, 9, 10, 11]. More recent approaches use some form of DNN,
including CNNs [12] and RNNs [13]. Prior work has been reported
on datasets such as TRECVid [14], ActivityNet [15], Sports1M [16],
and TUT/DCASE Acoustic scenes 2016 [17] which are much
smaller than YouTube-100M. Our large dataset puts us in a good
position to evaluate models with large model capacity.

RNNs and CNNs have been used in Large Vocabulary Continu-
ous Speech Recognition (LVCSR) [18]. Unlike that task, our labels
apply to entire videos without any changes in time, so we have yet
to try such recurrent models.

Eghbal-Zadeh et al. [19] recently won the DCASE 2016 Acous-
tic Scene Classification (ASC) task, which, like soundtrack classi-
fication, involves assigning a single label to an audio clip contain-
ing many events. Their system used spectrogram features feeding a
VGG classifier, similar to one of the classifiers in our work. This
paper, however, compares the performance of several different ar-
chitectures. To our knowledge, we are the first to publish results of
Inception and ResNet networks applied to audio.

We aggregate local classifications to whole-soundtrack deci-
sions by imitating the visual-based video classification of Ng et
al. [20]. After investigating several more complex models for com-
bining information across time, they found simple averaging of
single-frame CNN classification outputs performed nearly as well.
By analogy, we apply a classifier to a series of non-overlapping
segments, then average all the sets of classifier outputs.

Kumar et al. [21] consider AED in a dataset with video-level la-
bels as a Multiple Instance Learning (MIL) problem, but remark that
scaling such approaches remains an open problem. By contrast, we
are investigating the limits of training with weak labels for very large
datasets. While many of the individual segments will be uninforma-
tive about the labels inherited from the parent video, we hope that,
given enough training, the net can learn to spot useful cues. We are
not able to quantify how “weak” the labels are (i.e., what proportion
of the segments are uninformative), and for the majority of classes
(e.g., “Computer Hardware”, “Boeing 757”, “Ollie”), it’s not clear
how to decide relevance. Note that for some classes (e.g. “Beach”),
background ambiance is itself informative.

Our dataset size allows us to examine networks with large model
capacity, fully exploiting ideas from the image classification liter-
ature. By computing log-mel spectrograms of multiple frames, we
create 2D image-like patches to present to the classifiers. Although
the distinct meanings of time and frequency axes might argue for
audio-specific architectures, this work employs minimally-altered
image classification networks such as Inception-V3 and ResNet-50.
We train with subsets of YouTube-100M spanning 23K to 70M
videos to evaluate the impact of training set size on performance,
and we investigate the effects of label set size on generalization
by training models with subsets of labels, spanning 400 to 30K,
which are then evaluated on a single common subset of labels. We
additionally examine the usefulness of our networks for AED by
examining the performance of a model trained with embeddings
from one of our networks on the Audio Set [5] dataset.

2. DATASET

The YouTube-100M data set consists of 100 million YouTube
videos: 70M training videos, 10M evaluation videos, and a pool
of 20M videos that we use for validation. Videos average 4.6 min-
utes each for a total of 5.4M training hours. Each of these videos
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Table 1: Example labels from the 30K set.

Label prior Example Labels
0.1 . . . 0.2 Song, Music, Game, Sports, Performance

0.01 . . . 0.1 Singing, Car, Chordophone, Speech
∼ 10−5 Custom Motorcycle, Retaining Wall
∼ 10−6 Cormorant, Lecturer

is labeled with 1 or more topic identifiers (from Knowledge Graph
[22]) from a set of 30,871 labels. There are an average of around
5 labels per video. The labels are assigned automatically based on
a combination of metadata (title, description, comments, etc.), con-
text, and image content for each video. The labels apply to the entire
video and range from very generic (e.g. “Song”) to very specific
(e.g. “Cormorant”). Table 1 shows a few examples.

Being machine generated, the labels are not 100% accurate and
of the 30K labels, some are clearly acoustically relevant (“Trumpet”)
and others are less so (“Web Page”). Videos often bear annotations
with multiple degrees of specificity. For example, videos labeled
with “Trumpet” are often labeled “Entertainment” as well, although
no hierarchy is enforced.

3. EXPERIMENTAL FRAMEWORK

3.1. Training

The audio is divided into non-overlapping 960 ms frames. This
gave approximately 20 billion examples from the 70M videos. Each
frame inherits all the labels of its parent video. The 960 ms frames
are decomposed with a short-time Fourier transform applying 25 ms
windows every 10 ms. The resulting spectrogram is integrated into
64 mel-spaced frequency bins, and the magnitude of each bin is log-
transformed after adding a small offset to avoid numerical issues.
This gives log-mel spectrogram patches of 96 × 64 bins that form
the input to all classifiers. During training we fetch mini-batches of
128 input examples by randomly sampling from all patches.

All experiments used TensorFlow [23] and were trained asyn-
chronously on multiple GPUs using the Adam [24] optimizer. We
performed grid searches over learning rates, batch sizes, number of
GPUs, and parameter servers. Batch normalization [25] was applied
after all convolutional layers. All models used a final sigmoid layer
rather than a softmax layer since each example can have multiple
labels. Cross-entropy was the loss function. In view of the large
training set size, we did not use dropout [26], weight decay, or other
common regularization techniques. For the models trained on 7M
or more examples, we saw no evidence of overfitting. During train-
ing, we monitored progress via 1-best accuracy and mean Average
Precision (mAP) over a validation subset.

3.2. Evaluation

From the pool of 10M evaluation videos we created three balanced
evaluation sets, each with roughly 33 examples per class: 1M videos
for the 30K labels, 100K videos for the 3087 (henceforth 3K) most
frequent labels, and 12K videos for the 400 most frequent labels. We
passed each 960 ms frame from each evaluation video through the
classifier. We then averaged the classifier output scores across all
segments in a video.

For our metrics, we calculated the balanced average across all
classes of AUC (also reported as the equivalent d-prime class sepa-
ration), and mean Average Precision (mAP). AUC is the area under
the Receiver Operating Characteristic (ROC) curve [27], that is, the

probability of correctly classifying a positive example (correct ac-
cept rate) as a function of the probability of incorrectly classifying
a negative example as positive (false accept rate); perfect classifica-
tion achieves AUC of 1.0 (corresponding to an infinite d-prime), and
random guessing gives an AUC of 0.5 (d-prime of zero).1 mAP is
the mean across classes of the Average Precision (AP), which is the
proportion of positive items in a ranked list of trials (i.e., Precision)
averaged across lists just long enough to include each individual pos-
itive trial [28]. AP is widely used as an indicator of precision that
does not require a particular retrieval list length, but, unlike AUC,
it is directly correlated with the prior probability of the class. Be-
cause most of our classes have very low priors (< 10−4), the mAPs
we report are typically small, even though the false alarm rates are
good.

3.3. Architectures

Our baseline is a fully connected DNN, which we compared to sev-
eral networks closely modeled on successful image classifiers. For
our baseline experiments, we trained and evaluated using only the
10% most frequent labels of the original 30K (i.e, 3K labels). For
each experiment, we coarsely optimized number of GPUs and learn-
ing rate for the frame level classification accuracy. The optimal num-
ber of GPUs represents a compromise between overall computing
power and communication overhead, and varies by architecture.

3.3.1. Fully Connected

Our baseline network is a fully connected model with RELU ac-
tivations [29], N layers, and M units per layer. We swept over
N = [2, 3, 4, 5, 6] and M = [500, 1000, 2000, 3000, 4000]. Our
best performing model had N = 3 layers, M = 1000 units, learn-
ing rate of 3×10−5, 10 GPUs and 5 parameter servers. This network
has approximately 11.2M weights and 11.2M multiplies.

3.3.2. AlexNet

The original AlexNet [1] architectures was designed for a 224 ×
224 × 3 input with an initial 11 × 11 convolutional layer with a
stride of 4. Because our inputs are 96× 64, we use a stride of 2× 1
so that the number of activations are similar after the initial layer. We
also use batch normalization after each convolutional layer instead
of local response normalization (LRN) and replace the final 1000
unit layer with a 3087 unit layer. While the original AlexNet has
approximately 62.4M weights and 1.1G multiplies, our version has
37.3M weights and 767M multiplies. Also, for simplicity, unlike the
original AlexNet, we do not split filters across multiple devices. We
trained with 20 GPUs and 10 parameter servers.

3.3.3. VGG

The only changes we made to VGG (configuration E) [2] were to
the final layer (3087 units with a sigmoid) as well as the use of batch
normalization instead of LRN. While the original network had 144M
weights and 20B multiplies, the audio variant uses 62M weights and
2.4B multiplies. We tried another variant that reduced the initial
strides (as we did with AlexNet), but found that not modifying the
strides resulted in faster training and better performance. With our
setup, parallelizing beyond 10 GPUs did not help significantly, so
we trained with 10 GPUs and 5 parameter servers.

1d′ =
√
2F−1(AUC) where F−1 is the inverse cumulative distribution

function for a unit Gaussian.



Table 2: Comparison of performance of several DNN architectures
trained on 70M videos, each tagged with labels from a set of 3K. The
last row contains results for a model that was trained much longer
than the others, with a reduction in learning rate after 13 million
steps.

Architectures Steps Time AUC d-prime mAP
Fully Connected 5M 35h 0.851 1.471 0.058
AlexNet 5M 82h 0.894 1.764 0.115
VGG 5M 184h 0.911 1.909 0.161
Inception V3 5M 137h 0.918 1.969 0.181
ResNet-50 5M 119h 0.916 1.952 0.182
ResNet-50 17M 356h 0.926 2.041 0.212

3.3.4. Inception V3

We modified the inception V3 [3] network by removing the first four
layers of the stem, up to and including the MaxPool, as well as re-
moving the auxiliary network. We changed the Average Pool size to
10 × 6 to reflect the change in activations. We tried including the
stem and removing the first stride of 2 and MaxPool but found that it
performed worse than the variant with the truncated stem. The orig-
inal network has 27M weights with 5.6B multiplies, and the audio
variant has 28M weights and 4.7B multiplies. We trained with 40
GPUs and 20 parameter servers.

3.3.5. ResNet-50

We modified ResNet-50 [4] by removing the stride of 2 from the first
7×7 convolution so that the number of activations was not too differ-
ent in the audio version. We changed the Average Pool size to 6× 4
to reflect the change in activations. The original network has 26M
weights and 3.8B multiplies. The audio variant has 30M weights and
1.9B multiplies. We trained with 20 GPUs and 10 parameter servers.

4. EXPERIMENTS

4.1. Architecture Comparison

For all network architectures we trained with 3K labels and 70M
videos and compared after 5 million mini-batches of 128 inputs. Be-
cause some networks trained faster than others, comparing after a
fixed wall-clock time would give slightly different results but would
not change the relative ordering of the architectures’ performance.
We include numbers for ResNet after training for 17 million mini-
batches (405 hours) to show that performance continues to improve.
We reduced the learning rate by a factor of 10 after 13 million mini-
batches.

Table 2 shows the evaluation results calculated over the 100K
balanced videos. All CNNs beat the fully-connected baseline. In-
ception and ResNet achieve the best performance; they provide high
model capacity and their convolutional units can efficiently capture
common structures that may occur in different areas of the input ar-
ray for both images, and, we infer, our audio representation.

To investigate how the prior likelihood of each label affects its
performance, Fig. 1 shows a scatter plot of the 30K classes with label
frequency on the x axis and ResNet-50’s d-prime on the y axis. d-
prime seems to stay centered around 2.0 across label prior, although
the variance of d-prime increases for less-common classes. This is
contrary to the usual result where classifier performance improves
with increased training data, particularly over the 5 orders of magni-
tude illustrated in the plot.

Fig. 1: Scatter plot of ResNet-50’s per-class d-prime versus log prior
probability. Each point is a separate class from a random 20% subset
of the 30K set. Color reflects the class AP.

4.2. Label Set Size

Using a 400 label subset of the 30K labels, we investigated how
training with different subsets of classes can affect performance, per-
haps by encouraging intermediate representations that better gener-
alize to unseen examples even for the evaluation classes. In addition
to examining three label set sizes (30K, 3K, and 400), we compared
models with and without a bottleneck layer of 128 units placed right
before the final output layer. We introduced the bottleneck layer to
speed up the training of the model trained with 30K labels. Without
a bottleneck, the larger output layer increased the number of weights
from 30M to 80M and significantly reduced training speed. We do
not report metrics on the 30K label model without the bottleneck
because it would have taken several months to train. For all label
set size experiments, we used the ResNet-50 model and trained for 5
million mini-batches of 128 inputs (about 120 hours) on 70M videos.

Tables 3 shows the results. When comparing models with the
bottleneck, we see that performance does indeed improve slightly
as we increase the number of labels we trained on, although net-
works without the bottleneck have higher performance overall. The
bottleneck layer is relatively small compared to the 2048 activations
coming out of ResNet-50’s Average Pool layer and so it is effecting
a substantial reduction in information. These results provide weak
support to the notion that training with a broader set of categories
can help to regularize even the 400 class subset.

4.3. Training Set Size

Having a very large training set available allows us to investigate
how training set size affects performance. With 70M videos and an
average of 4.6 minutes per video, we have around 20 billion 960 ms
training examples. Given ResNet-50’s training speed of 11 mini-
batches per second with 20 GPUs, it would take 23 weeks for the
network to see each pattern once (one epoch). However, if all videos
were equal length and fully randomized, we expect to see at least one
frame from each video in only 14 hours. We hypothesize that, even



Table 3: Results of varying label set size, evaluated over 400
labels. All models are variants of ResNet-50 trained on 70M
videos. The bottleneck, if present, is 128 dimensions.

Bneck Labels AUC d-prime mAP
no 30K — — —
no 3K 0.930 2.087 0.381
no 400 0.928 2.067 0.376
yes 30K 0.925 2.035 0.369
yes 3K 0.919 1.982 0.347
yes 400 0.924 2.026 0.365

Table 4: Results of training with different amounts of data. All
rows used the same ResNet-50 architecture trained on videos
tagged with labels from a set of 3K.

Training Videos AUC d-prime mAP
70M 0.923 2.019 0.206
7M 0.922 2.006 0.202
700K 0.921 1.997 0.203
70K 0.909 1.883 0.162
23K 0.868 1.581 0.118

Trumpet Piano Guitar

Fig. 2: Three example excerpts from a video classified by ResNet-50 with instantaneous model outputs overlaid. The 16 classifier outputs
with the greatest peak values across the entire video were chosen from the 30K set for display.

if we cannot get through an entire epoch, 70M videos will provide
an advantage over 7M by virtue of the greater diversity of videos
underlying the limited number of training patterns consumed. We
trained a ResNet-50 model for 16 million mini-batches of 128 inputs
(about 380 hours) on the 3K label set with 70M, 7M, 700K, 70K, and
23K videos.

The video level results are shown in Table 4. The 70K and
23K models show worse performance but the validation plots (not
included) showed that they likely suffered from overfitting. Regu-
larization techniques (or data augmentation) might have boosted the
numbers on these smaller training sets. The 700K, 7M, and 70M
models are mostly very close in performance although the 700K
model is slightly inferior.

4.4. AED with the Audio Set Dataset

Audio Set [5] is a dataset of over 1 million 10 second excerpts la-
beled with a vocabulary of acoustic events (whereas not all of the
YouTube-100M 30K labels pertain to acoustic events). This comes
to about 3000 hours – still only ≈ 0.05% of YouTube-100M. We
train two fully-connected models to predict labels for Audio Set. The
first model uses 64×20 log-mel patches and the second uses the out-
put of the penultimate “embedding” layer of our best ResNet model
as inputs. The log-mel baseline achieves a balanced mAP of 0.137
and AUC of 0.904 (equivalent to d-prime of 1.846). The model
trained on embeddings achieves mAP / AUC / d-prime of 0.314 /
0.959 / 2.452. This jump in performance reflects the benefit of the
larger YouTube-100M training set embodied in the ResNet classifier
outputs.

5. CONCLUSIONS

The results in Section 4.1 show that state-of-the-art image networks
are capable of excellent results on audio classification when com-
pared to a simple fully connected network or earlier image classifica-
tion architectures. In Section 4.2 we saw results showing that train-
ing on larger label set vocabularies can improve performance, albeit
modestly, when evaluating on smaller label sets. In Section 4.3 we
saw that increasing the number of videos up to 7M improves per-
formance for the best-performing ResNet-50 architecture. We note
that regularization could have reduced the gap between the models
trained on smaller datasets and the 7M and 70M datasets. In Section
4.4 we see a significant increase over our baseline when training a
model for AED with ResNet embeddings on the Audio Set dataset.

In addition to these quantified results, we can subjectively exam-
ine the performance of the model on segments of video. Fig. 2 shows
the results of running our best classifier over a video and overlaying
the frame-by-frame results of the 16 classifier outputs with the great-
est peak values across the entire video. The different sound sources
present at different points in the video are clearly distinguished. 2
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