Google

Summary

- We extend the technique of neural texture synthesis to the audio domain.
- We use an architecture consisting of six single-layer convolutional networks with random weights. The kernel widths of each layer are equally spaced logarithmically.
- We find that three loss terms are necessary for diverse, high quality textures:
- A Gramian term to match the feature statistics of the target texture. • An autocorrelation term to reproduce rhythm.
- And a diversity term that discourages exact feature matching.
- We synthesize spectrograms with L-BFGS optimization and then invert the spectrogram with Griffin-Lim.
- We analyze the quality of the resulting textures both quantitatively and qualitatively to show these three terms in the loss function are necessary to produce diverse, high quality textures.

Problem & sample results

- The problem of texture synthesis is to take a sample of some textured data (typically an image) and generate synthesized data which are perceptually similar, but are not identical to the original sample (or are not identical after a trivial transformation such as translation).
- Spectrograms of four complex textures synthesized with our algorithm:

Samples can be heard at https://antognini-google.github.io/audio_textures

Audio Texture Synthesis with Random Neural Networks: Improving Diversity and Quality

Joseph M. Antognini*, Matthew Hoffman, Ron Weiss

*Work done as part of Google AI Residency, g.co/airesidency

Signal processing & architecture Synthesized Target STFT: Hann window, 512 samples / window, 64 samples / hop 6 random 1-D convolutional layers (convolving over time) with ReLU activation 512 filters apiece Filter sizes: 2, 4, 8, 16, 64, 128 Concatenation Feature vector, $F_{t_{\mu}}$ Feature vector, $\widetilde{F}_{t\mu}$ $\blacktriangleright \mathcal{L} = \mathcal{L}_{\text{Gram}} + \alpha \mathcal{L}_{\text{autocorr}} + \beta \mathcal{L}_{\text{c}}$

Loss terms

• *Gram loss:* Matches the Gram matrix of the feature activations of each convolutional layer. (Originally proposed by Gatys et al., 2015)

$$\mathcal{L}_{\text{Gram}} = \frac{\sum_{k,\mu,\nu} \left(G_{\mu\nu}^k - \widetilde{G}_{\mu\nu}^k \right)^2}{\sum_{k,\mu,\nu} \left(\widetilde{G}_{\mu\nu}^k \right)^2}$$

• Autocorrelation loss: Matches the autocorrelation function of the target texture. We find that this term is necessary to synthesize rhythmic textures. (Originally proposed by Sendik & Cohen-Or, 2017.)

$$\mathcal{L}_{\text{autocorr}} = \frac{\sum_{k,\tau,\mu} \left(A_{\tau\mu}^k - \widetilde{A}_{\tau\mu}^k \right)^2}{\sum_{k,\tau,\mu} \left(\widetilde{A}_{\tau\mu}^k \right)^2} \quad A_{\tau\mu}^k = \mathscr{F}_f^{-1} \left[\mathscr{F}_t[F_{t\mu}^k] \,\mathscr{F}_t[F_{t\mu}^k]^* \right]$$

• Shift-invariant diversity loss: Penalizes the optimizer for synthesizing textures which are identical to the original but shifted in time. Without this term the optimizer can reproduce a shifted version of the original texture.

$$\mathcal{L}_{\text{div}} = \max_{s} \left(\frac{\sum_{k,t,\mu} \left(\widetilde{F}_{t\mu}^{k} \right)^{2}}{\sum_{k,t,\mu} \left(F_{t+s,\mu}^{k} - \widetilde{F}_{t\mu}^{k} \right)^{2}} \right)$$

Optimization

• We backprop through to the spectrogram and optimize the spectrogram with 2000 iterations of the L-BFGS algorithm. We then invert the spectrogram with 500 iterations of the Griffin-Lim algorithm to obtain audio.

References

Griffin, D., & Lim, J., "Signal estimation from modified short-time fourier transform", 1984 Gatys, L., Ecker, A., & Bethge, M., "Texture synthesis using convolutional neural networks", 2015 McDermott, J. & Simoncelli, E., "Sound texture perception via statistics of the auditory periphery", 2011 Portilla, J. & Simoncelli, E., "A parametric texture model based on joint statistics of complex wavelet coefficients", 2000 Sendik & Cohen-Or, "Deep correlations for texture synthesis", 2017 Ulyanov, D., & Lebedev, V., "Audio texture synthesis and style transfer", 2016

$$G^k_{\mu\nu} = \frac{1}{T} \sum_t F^k_{t\mu} F^k_{t\nu}$$

- textures
 - on a set of real textures and synthesized textures:

- the spectrograms to determine how well rhythms are matched.
- spectrograms for all shifts.
- the diversity and improves the VGGish score.

Spectrograms recovered via Griffin-Lim McDermott & Simoncelli (2011) Ulyanov & Lebedev (2016) $\mathcal{L}_{\text{Gram}}$ $\mathcal{L}_{Gram} + \mathcal{L}_{autocorr}$ $\mathcal{L}_{\text{Gram}} + \mathcal{L}_{\text{autocorr}} + \mathcal{L}_{\text{div}} \ (\beta = 10^{-5})$ $\mathcal{L}_{\text{Gram}} + \mathcal{L}_{\text{autocorr}} + \mathcal{L}_{\text{div}} \ (\beta = 10^{-3})$

- The diversity-quality tradeoff
- The diversity of the synthesized textures can be controlled by the weight on the diversity loss term.
- As diversity of the synthesized textures increases (due to a higher weight on the diversity term), the quality as measured by the VGGish score decreases. (Higher VGGish score is lower quality.)

Qualitative evaluation

• The effect of the number of filters on the synthesized spectrograms:

• We introduce a "VGGish score" in analogy to the "Inception score" common in the GAN literature. • The VGGish score attempts to measure both the diversity and the quality of the synthesized

• It measures the KL divergence between the output distribution of the VGGish neural network

 $\mathcal{S}_{\text{VGGish}} \equiv \exp\left[\mathbb{E}_x\left[\text{KL}\left(p_{\text{VGGish}}(y|\tilde{x}) \mid \mid p_{\text{VGGish}}(y|x)\right)\right]\right]$

• We measure an "autocorrelation score" given by the squared difference of the autocorrelations of

• We measure a "diversity score" given by the max of the inverse squared differences between the

• Unlike the loss terms, these scores are computed on the spectrograms rather than on the features.

• Using the Gram loss alone produces the highest VGGish scores, but the autocorrelation loss is necessary to achieve a good autocorrelation score. Adding in the diversity loss in turn increases

VGGish ($\times 10^{-4}$)			Autocorrelation			Diversity		
Rthm.	Ptch.	Other	Rthm.	Ptch.	Other	Rthm.	Ptch.	Other
9.7	12.6	7.1	7.4	0.54	2.9	21.4	29.7	22.7
16.7	33.2	8.3	542.0	408.1	421.9	1.6	1.6	2.0
13.4	26.8	10.0	40.6	23.3	27.4	2.9	3.0	3.3
9.9	16.8	7.3	29.0	9.7	6.5	2.4	3.0	3.5
17.8	21.3	17.9	13.3	7.4	15.6	3.4	5.4	5.0
14.5	23.0	12.2	13.0	2.3	7.2	3.8	6.8	4.4
14.9	19.0	10.0	4.7	3.7	7.1	5.0	4.9	3.9

