Google Research

Overview

Summary

- TTS* in one sequence-to-sequence model
- block-autoregressive normalizing flow, no vocoder *normalized-text- or phoneme-to-speech
- Directly predict 40ms *waveform blocks* at each decoder step • no overlap, no spectrograms
- End-to-end training, maximizing likelihood
- High fidelity output
 - trails Tacotron+WaveRNN baseline
- higher sample variation, captures modes of training data?
- ~10x faster than real-time synthesis on TPU

Background

- Tacotron [1] [2]: phoneme input, mel spectrogram frame output
 - autoregressive decoder, each step generates new frame separate vocoder, inverts spectrogram to waveform
 - e.g., WaveRNN [3], sample-by-sample autoregressive

K = 960 samples (40 ms at 24 kHz)

Data

- US English, single female speaker, sampled at 24 kHz • 39 hours training, 601 utterances held out
- Baselines
 - Tacotron-PN (postnet) + Griffin-Lim (similar to [1])
 - Tacotron + WaveRNN (similar to [2])
 - Tacotron + Flow vocoder
 - fully parallel (similar flow to Wave-Tacotron, 6 stages)
- Subjective listening tests rating speech naturalness • MOS on 5 point scale

Generation speed

- Seconds to generate 5 seconds of speech • 90 input tokens, batch size 1
- Wave-Tacotron ~10x faster than real-time on TPU (2x on CPU) • slower as frame size K decreases (more autoregressive steps)
- ~10x faster than Tacotron + WaveRNN on TPU (25x on CPU)
- ~2.5x slower than fully parallel vocoder on CPU

Model	K	Vocoder	TPU	CPU
Tacotron-PN		Griffin-Lim, 100 iterations	0.14	0.88
Tacotron-PN		Griffin-Lim, 1000 iterations	1.11	7.71
Tacotron		WaveRNN	5.34	63.38
Tacotron		Flowcoder	0.49	0.97
Wave-Tacotron	13.3ms		0.80	5.26
Wave-Tacotron	26.6ms		0.64	3.25
Wave-Tacotron	40.0ms		0.58	2.52
Wave-Tacotron	53.3ms		0.55	2.26

Experiments

Results

- Large gap to Tacotron-PN and Tacotron + Flowcoder

Ablations

Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis

 $y_t \rightarrow Sqz(L)$

cond. features **c**,

pos. embeddings

repeated J times

Ron J. Weiss, RJ Skerry-Ryan, Eric Battenberg, Soroosh Mariooryad, and Diederik P. Kingma

{ronw, rjryan, ebattenberg, soroosh, durk}@google.com

• Squeeze waveform block into frames, length L = 10 samples • M = 5 stages, each processes signal at different scale \circ N = 12 steps per stage • deep convnet: M N = 60 total steps

• Sinusoidal position embeddings encode position in each frame

 Tacotron + WaveRNN best • char / phoneme roughly on par • Wave-Tacotron trails by ~0.2 points • phoneme > char • network uses capacity to model detailed

waveform structure instead of pronunciation?

• 2 layer decoder LSTM 256 channels in coupling layers

• Optimal sampling temperature T = 0.7

Deep multiscale flow is critical

• Varying block size K \circ quality starts degrading for K > 40 ms

50						
Model	Vocoder	Input	MOS			
Ground truth Tacotron-PN Tacotron-PN Tacotron Tacotron	– Griffin-Lin Griffin-Lin WaveRNN WaveRNN	- n char n phoneme char phoneme	$4.56 \pm 0.04 \\3.68 \pm 0.08 \\3.74 \pm 0.07 \\4.36 \pm 0.05 \\4.39 \pm 0.05 \\2.24 \pm 0.07$	•	Generate 12 samples from the same input text Baselines generate very consistent samples, across vocoders	
Tacotron	Flowcoder	phoneme	3.34 ± 0.07 3.31 ± 0.07		• Same prosody every time	
Wave-Tacotron Wave-Tacotron	l —	char phoneme	4.07 ± 0.06 4.23 ± 0.06	•	 Wave-Tacotron has high variance captures multimodal training distribution? Tacotron regression loss collapses to 	
$\frac{\text{Model}}{\text{Base } T = 0.}$	R .8 3	M N 5 12 4	$\frac{\text{MOS}}{4.01 \pm 0.06}$		 single prosody mode? similar pattern in Flowtron [8] useful for ASR data augmentation? 	
T = 0.6 T = 0.7 T = 0.9 128 flow cha 30 steps, 5 st 60 steps, 4 st 60 steps, 3 st	3 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 5 4 3 5 4 3 5 4 3 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.12 ± 0.06 4.16 ± 0.06 3.77 ± 0.07 3.31 ± 0.07 3.11 ± 0.07 3.50 ± 0.07 2.44 ± 0.07			
K = 320 (1) K = 640 (2) K = 1280 (2)	3.33 ms) 1 6.67 ms) 2 53.3 ms) 4	5 12 4 5 12 4 5 12 3	4.05 ± 0.06 4.06 ± 0.06 3.55 ± 0.07	Re	eferences [1] Wang, et al., <u>Tacotron: Towards End-to-End Speech Synth</u> [2] Shen, et al., <u>Natural TTS Synthesis by Conditioning Wave</u> [3] Kalchbrenner, et al., <u>Efficient Neural Audio Synthesis</u> . ICM	nesis. Inter <u>Net on Me</u> IL 2018.
/publicat	tions/v	vave-	tacotron		 [5] Prenger, et al., <u>WaveGlow: A Flow-based Generative Netw</u> [6] Dinh, et al., <u>NICE: Non-linear independent components es</u> [7] Dinh and Bengio, <u>Density estimation using Real NVP</u>. ICL 	<u>ork for Sp</u> <u>ork for Sp</u> timation. R 2017.

odel	Vocoder		Inp	out	MOS		3/
ound truth cotron-PN	– Griffin-I Griffin-I	Lim	- cha	ar	$4.56 \pm 0.04 \\3.68 \pm 0.08 \\3.74 \pm 0.07$	 Generate 12 samples from the same input text 	(ZH) Q2
cotron cotron cotron cotron cotron ave-Tacotron ave-Tacotron	WaveRN WaveRN Flowcod Flowcod n –	IN IN Ier Ier	cha pho cha pho cha cha	ar onen ar onen ar ar	$\begin{array}{r} 4.36 \pm 0.07 \\ 4.36 \pm 0.05 \\ 100 \\ 1$	 Baselines generate very consistent samples, across vocoders same prosody every time Wave-Tacotron has high variance captures multimodal training distribution? 	3(ZH) 04
$\frac{\text{Model}}{\text{Base } T = 0}$).8	R 3	ри М 5	N 12	$\frac{MOS}{4.01 \pm 0.06}$	 Captures multimodal training distribution? Tacotron regression loss collapses to single <i>prosody mode</i>? similar pattern in Flowtron [8] useful for ASR data augmentation? 	30 (ZH) 04
T = 0.6 T = 0.7 T = 0.9 128 flow ch 30 steps, 5 s 60 steps, 4 s	annels stages stages	3 3 3 3 3 3	5 5 5 5 4	12 12 12 12 6 15	$\begin{array}{c} 4.12 \pm 0.06 \\ 4.16 \pm 0.06 \\ 3.77 \pm 0.07 \\ 3.31 \pm 0.07 \\ 3.11 \pm 0.07 \\ 3.50 \pm 0.07 \end{array}$		30 (ZH) 04
60 steps, 3 $K = 320$ (2) K = 640 (2) K = 1280	stages 13.33 ms) 26.67 ms) (53.3 ms)	3 1 2 4	3 5 5 5	20 12 12 12	2.44 ± 0.07 4.05 ± 0.06 4.06 ± 0.06 3.55 ± 0.07	References [1] Wang, et al., <u>Tacotron: Towards End-to-End Speech Synthesis</u> . Inters [2] Shen, et al., <u>Natural TTS Synthesis by Conditioning WaveNet on Med</u>	spee I Spe
oublica	tions	/w	<u>/aˈ</u>	ve	-tacotron	 [3] Kalchbrenner, et al., <u>Efficient Neural Audio Synthesis</u>. ICML 2018. [4] Kim, et al., <u>FloWaveNet : A Generative Flow for Raw Audio</u>. ICML 20 [5] Prenger, et al., <u>WaveGlow: A Flow-based Generative Network for Spo</u> [6] Dinh, et al., <u>NICE: Non-linear independent components estimation</u>. ICML 20 [7] Dinh and Bengio, <u>Density estimation using Real NVP</u>. ICLR 2017. 	19. <u>eech</u> CLR

Sound examples: https://google.github.io/tacotror

Sar	nn	
Sal		VC

• At each step: transform waveform block \mathbf{y}_{t} into noise \mathbf{z}_{t}

= sum_t -log $N(g^{-1}(y_t; c_t); 0, I)$ - log $|det(dg^{-1}(y_t; c_t) / dy_t)|$ spherical Jacobian Gaussian determinant

z_t ~ N(**0**, T **I**)

 $\mathbf{y}_{t} = g(\mathbf{z}_{t}; \mathbf{c}_{t})$

• EOS *stop token* classifier loss: P(t is last frame)

• take inverse of each layer, reverse order

- At each step
 - sample noise vector
- generate waveform block with flow
- autoregressive conditioning on previous output \mathbf{y}_{t-1}

• concatenate blocks y_{t} to form final signal $y = v stack(y_{t})$

ech 2017. ectrogram Predictions. ICASSP 2018.

Synthesis. ICASSP 2019. R 2015.

[8] Valle, et al., Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis . ICLR 2021.