Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis

R. J. Weiss, R. J. Skerry-Ryan, E. Battenberg, S. Mariooryad, and D. P. Kingma

IEEE ICASSP 2021

- TTS* in one sequence-to-sequence model
 - no vocoder
- Directly predict sequence of ~10-50ms waveform blocks
 - no spectrograms anywhere
- Goal: fast waveform generation

- **Encoder** maps input phonemes to latent representation
- Autoregressive decoder generates mel spectrogram one frame at a time
- Separately trained vocoder network to invert spectrogram to waveform
 - e.g., WaveRNN, slow sample-by-sample autoregressive network 0

Wang, et al., Tacotron: Towards End-to-End Speech Synthesis. Interspeech 2017. Shen, et al., Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. ICASSP 2018. Kalchbrenner, et al., Efficient Neural Audio Synthesis. ICML 2018.

s/spectrogram frame/waveform block/

- Segment waveform into non-overlapping blocks
 - K = 960 samples, 40 ms at 24 kHz sample rate
- *Block-autoregressive* generation, each decoder step generates a new block
 - waveform samples in each block generated <u>in parallel</u>, much faster than WaveRNN

- Replace post-net and vocoder with conditional normalizing flow
 P(y_t | c_t) = P(y_t | y_{1:t-1}, e_{1:t})
 = P(y_t | previous waveform blocks, text)
- Tacotron encoder/decoder predicts flow conditioning features
- Train end-to-end, maximize likelihood of training data

6

Related work

Flow-based neural vocoders

- generate waveforms from mel spectrograms Ο
- WaveGlow [Prenger et al., 2019], FloWaveNet [Kim et al., 2019] Ο WaveFlow [Ping et al., 2020]

Flow TTS models

- generate mel spectrograms from text 0
- parallel: Flow-TTS [Miao et al., 2020], Glow-TTS [Kim, Kim, et al., 2020] Ο
- autoregressive: Flowtron [Valle et al., 2021] Ο

Direct-to-waveform TTS

- adversarial training Ο
- use mel spectrograms to help learn alignment, or as loss functions Ο
- EATS [Donahue et al., 2021], Fastspeech 2s [Ren et al., 2021] Ο

Prenger, et al., WaveGlow: A Flow-based Generative Network for Speech Synthesis. ICASSP 2019. Kim, et al., FloWaveNet : A Generative Flow for Raw Audio. ICML 2019. Ping, et al., Waveflow: A compact flow-based model for raw audio. ICML 2020. Miao, et al., Flow-TTS: A non-autoregressive network for text to speech based on flow. ICASSP 2020. Kim, et al., Glow-TTS: A generative flow for text-to-speech via monotonic alignment search. NeurIPS 2020. Valle, et al., Flowtron: an autoregressive flow-based generative network for text-to-speech synthesis. ICLR 2021. Donahue, et al., End-to-end Adversarial Text-to-Speech, ICLR 2021. Ren, et al., FastSpeech 2: Fast and High-Quality End-to-End Text to Speech, ICLR 2021.

Normalizing flow

Model joint distribution of K samples: P(y_{t1}, y_{t2}, ..., y_{tK} | c_t)

- multiscale architecture, similar to FloWaveNet [Kim et al., 2019] neural vocoder
 - M = 5 stages, each with N = 12 steps
- Invertible network
 - training: transform waveform block into noise
 - sampling: transform noise sample into waveform block using inverse
- Change of variables
- Maximize likelihood

$$\mathbf{y}_{t} = g(\mathbf{z}_{t}; \mathbf{c}_{t})$$
$$P(\mathbf{y}_{t} | \mathbf{c}_{t}) = P(\mathbf{z}_{t} | \mathbf{c}_{t}) |\det(d\mathbf{z}_{t} / d\mathbf{y}_{t})|$$

- Teacher forced conditioning
- At each step: transform waveform block y, into noise z,
- Flow loss: $-\log P(\mathbf{y}) = \sup_{t} -\log P(\mathbf{y}_{t} | \mathbf{c}_{t})$ = $\sup_{t} -\log N(g^{-1}(\mathbf{y}_{t}; \mathbf{c}_{t}); \mathbf{0}, \mathbf{I}) - \log |\det(dg^{-1}(\mathbf{y}_{t}; \mathbf{c}_{t}) / d\mathbf{y}_{t})|$

spherical Gaussian

Jacobian determinant

• EOS *stop token* classifier loss: P(t is last frame)

- <u>Invert</u> the flow network
 - take inverse of each layer, reverse order
- At each step
 - sample a noise vector
 - pass through flow to generate waveform block
 - \circ autoregressive conditioning on previous output \mathbf{y}_{t-1}

$$\mathbf{y}_{t} = g(\mathbf{z}_{t}; \mathbf{c}_{t})$$

 $z \sim N(0, I)$

- concatenate blocks **y**, to form final signal
 - $y = vstack(y_t)$

Experiment configuration

• Systems

- Tacotron-PN (postnet) + Griffin-Lim (à la Tacotron)
- Tacotron + WaveRNN (à la Tacotron 2)
- Tacotron + Flow vocoder
 - identical Tacotron model
 - fully parallel vocoder (similar flow architecture to Wave-Tacotron, 6 stages)
- Wave-Tacotron
- Datasets US English, single female speaker, sampled at 24 kHz
 - Proprietary
 - 39 hours training
 - average duration: 3.3 seconds
 - LJ Speech
 - 22 hours training
 - average duration: 10 seconds

Generation speed

Model K	Vocoder	TPU	CPU
Tacotron-PN	Griffin-Lim, 100 iterations	0.14	0.88
Tacotron-PN	Griffin-Lim, 1000 iterations	1.11	7.71
Tacotron	WaveRNN	5.34	63.38
Tacotron	Flowcoder	0.49	0.97
Wave-Tacotron 13.3ms	_	0.80	5.26
Wave-Tacotron 26.6ms	-	0.64	3.25
Wave-Tacotron 40.0ms	-	0.58	2.52
Wave-Tacotron 53.3ms	-	0.55	2.26

- Seconds to generate 5 seconds of speech
 - 90 input tokens, batch size 1
- Wave-Tacotron ~10x faster than real-time on TPU (2x on CPU)
 - slower as frame size K decreases (more autoregressive steps)
- ~10x faster than Tacotron + WaveRNN on TPU (25x on CPU)

Experiments: proprietary data

- Subjective listening tests rating speech naturalness
 - MOS on 5 point scale
- Tacotron + WaveRNN best
 - \circ char / phoneme roughly par
- Wave-Tacotron trails by ~0.2 points
 - phoneme > char
 - network uses capacity to model detailed waveform structure instead of pronunciation?
- Large gap to Tacotron-PN and Tacotron + Flowcoder

Model	Vocoder	Input	MOS
Ground truth	_	-	4.56 ± 0.04
Tacotron-PN	Griffin-Lim	char	3.68 ± 0.08
Tacotron-PN	Griffin-Lim	phoneme	3.74 ± 0.07
Tacotron	WaveRNN	char	4.36 ± 0.05
Tacotron	WaveRNN	phoneme	$\textbf{4.39} \pm \textbf{0.05}$
Tacotron	Flowcoder	char	3.34 ± 0.07
Tacotron	Flowcoder	phoneme	3.31 ± 0.07
Wave-Tacotron	ı —	char	4.07 ± 0.06
Wave-Tacotron	ı —	phoneme	4.23 ± 0.06

12

Experiments: LJ Speech

- Longer average utterance duration, halve training batch size to 128
- Similar trend to models trained on proprietary data Tacotron+WaveRNN >> Wave-Tacotron > others
- Larger gap between Tacotron+WaveRNN and Wave-Tacotron
 - need more training data for more end-to-end task?
 - and/or better tuning?

Model	Vocoder	Input	MOS
Ground truth		. <u></u>	4.51 ± 0.05
Tacotron-PN	Griffin-Lim	char	3.26 ± 0.11
Tacotron	WaveRNN	char	$\textbf{4.47} \pm \textbf{0.06}$
Tacotron	Flowcoder	char	3.11 ± 0.10
Wave-Tacotron	-	char	3.56 ± 0.09

Ground truth	
Tacotron-PN + Griffin-Lim	
Tacotron + WaveRNN	
Tacotron + Flowcoder	
Wave-Tacotron	

source: https://google.github.io/tacotron/publications/wave-tacotron/#architecture-comparison-on-single-speaker-ljspeech-datase

Sample variability

- Baseline Tacostron generate
 very consistent samples
 - same prosody every time

- Wave-Tacotron has high variance
 - captures multimodal training distribution?
 - Tacotron regression loss collapses to single prosody mode?
 - similar pattern in Flowtron [Valle et al., 2021]

Summary

- Sequence-to-sequence text-to-speech synthesis without spectrograms
 - block-autoregressive normalizing flow
- End-to-end training, maximizing likelihood
- High fidelity output
 - trails Tacotron + WaveRNN baseline
 - higher sample variation, captures multimodal training data?
- ~10x faster than real-time synthesis on TPU

Sound examples: https://google.github.io/tacotron/publications/wave-tacotron

Extra slides

Multiscale flow

- Squeeze K sample waveform block into K/L frames
 - base frame length L = 10 samples
- Squeeze after each stage
 - doubles dimension, halves frame rate
- M = 5 stages, each processes signal at different scale
 - N = 12 steps per stage
 - deep convnet: MN = 60 total steps

Experiments: Ablations

- 2 layer decoder LSTM, 256 flow channels
- Optimal sampling temperature T = 0.7
 z_t ~ N(z_t; 0, TI)
- Architecture details
 - pre-emphasis, position embedding
 - flow width
 - o number of stages / multiscale architecture
- Varying block size K
 - quality starts degrading if K > 40 ms

Model	R	M	N	MOS
Base $T = 0.8$	3	5	12	4.01 ± 0.06
T = 0.6	3	5	12	4.12 ± 0.06
T = 0.7	3	5	12	4.16 ± 0.06
T = 0.9	3	5	12	3.77 ± 0.07
no pre-emphasis	3	5	12	3.85 ± 0.06
no position emb.	3	5	12	3.70 ± 0.07
no skip connection	3	5	12	_
128 flow channels	3	5	12	3.31 ± 0.07
30 steps, 5 stages	3	5	6	3.11 ± 0.07
60 steps, 4 stages	3	4	15	3.50 ± 0.07
60 steps, 3 stages	3	3	20	2.44 ± 0.07
$K = 320 \ (13.33 \ \mathrm{ms})$	1	5	12	4.05 ± 0.06
$K = 640 \ (26.67 \ \mathrm{ms})$	2	5	12	4.06 ± 0.06
K = 1280 (53.3 ms)	4	5	12	3.55 ± 0.07

Unconditional generation

- Remove encoder and attention, condition only on previous samples
 P(y_t | c_t) = P(y_t | y_{1:t-1}) = P(y_t | previous waveform blocks)
- Generates coherent syllables, occasional words

