Google

Sequence-to-Sequence Models Can Directly Translate Foreign Speech

Ron J. Weiss, **Jan Chorowski**, Navdeep Jaitly, Yonghui Wu, Zhifeng Chen

End-to-end training for speech translation

- Task: Spanish speech to English text translation
 - Typically train specialized translation model on ASR output lattice, or integrate ASR and translation decoding using e.g. stochastic FST
- Why end-to-end?
 - Directly optimize for desired output, avoid compounding errors
 - e.g. difficult for text translation system to recover from gross misrecognition
 - Single decoding step -> low latency inference
 - Less training data required -- don't need both transcript and translations
 - (might not be an advantage)
- Use sequence-to-sequence neural network model
 - Flexible framework, easily admits multi-task training
 - Previous work
 - [Bérard et al, 2016] trained "Listen and Translate" seq2seq model on synthetic speech
 - [Duong et al, 2016] seg2seg model to align speech with translation

Sequence-to-sequence / Encoder-decoder with attention

- Recurrent neural net that maps between arbitrary length sequences [Bahdanau et al, 2015]
 - e.g. "Listen, Attend and Spell" [Chan et al, 2016] and [Chorowski et al, 2015]
 sequence of spectrogram frames -> sequence of characters

Encoder RNN

- Stacked (bidirectional) RNN computes latent representation of input sequence
 - o Following [Zhang et al, 2017], include convolutional layers to downsample sequence in time

Decoder RNN

- Autoregressive next-step prediction -- outputs one character at a time
- Conditioned on entire encoded input sequence via attention context vector

Attention

- For each output token, generates a context vector from encoder latent representation
- Computes an alignment between input and output sequences
 - Prob(h_i | y_{1..k})

Seq2seq ASR: Architecture details

- Input: 80 channel log mel filterbank features
 - + deltas and accelerations
- Encoder follows [Zhang et al, 2017]
 - 2 stacked 3x3 convolution layers,
 strided to downsample in time by a total factor of 4
 - 1 convolutional LSTM layer
 - 3 stacked bidirectional LSTM layers with 512 cells
 - batch normalization
- Additive attention [Bahdanau et al, 2015]
- Decoder
 - 4 stacked unidirectional LSTM layers
 - >= 2 layers improve performance, especially for speech translation
 - skip connections pass attention context to each decoder layer
- Regularization: Gaussian weight noise and L2 weight decay

Seq2seq Speech Translation (ST): Cascade

Compare three approaches:

1. ASR -> NMT cascade

 train independent Spanish ASR, and text neural machine translation models

pass top ASR hypothesis through NMT

End-to-end ST

train LAS model to directly predict English text from Spanish audio

 identical architectures for Spanish and Spanish-English ST

3. Multi-task ST / ASR

- shared encoder
- 2 independent decoders with different attention networks
 - each emits text in a difference

NMT attention / decoder

yes and have you...

Seq2seq Speech Translation (ST): End-to-end

0/0.0

60/0.6

120/1.2

180/1.8

Compare three approaches:

ASR -> NMT cascade

- train independent Spanish ASR, and text neural machine translation models
- pass top ASR hypothesis through NMT

End-to-end ST

- train LAS model to directly predict
 English text from Spanish audio
- identical architectures for Spanish ASR and Spanish-English ST

3. Multi-task ST / ASR

- shared encoder
- 2 independent decoders with different attention networks
 - each emits text in a different language

240/2.4

300/3.0

Seq2seq Speech Translation (ST): Multi-task

Compare three approaches:

1. ASR -> NMT cascade

- train independent Spanish ASR, and text neural machine translation models
- pass top ASR hypothesis through NMT

2. End-to-end ST

- train LAS model to directly predict *English* text from Spanish audio
- identical architectures for Spanish ASR and Spanish-English ST

3. Multi-task ST / ASR

- shared encoder
- 2 independent decoders with different attention networks
 - each emits text in a different language

Seq2seq Speech Translation: Attention

recognition attention very confident

Google

translation attention smoothed out across many spectrogram frames for each output character
 ambiguous mapping between Spanish speech acoustics and English text

Seq2seq Speech Translation: Attention

- speech recognition attention is mostly monotonic
- translation attention reorders input: same frames attended to for "vive aqui" and "living here"

Experiments: Fisher/Callhome Spanish-English data

- Transcribed Spanish telephone conversations from LDC
 - Fisher: conversations between strangers
 - o Callhome: conversations between friends and family. more informal and challenging
- Crowdsourced English translations of Spanish transcripts from [Post et al, 2013]
- Train on 140k Fisher utterances (160 hours)
- Tune using Fisher/dev
- Evaluate on held out Fisher/test set and Callhome

Experiments: Baseline models

	Fisher			Callhome		
	dev	dev2	test	devtest	evltest	
Ours ³	25.7	25.1	23.2	44.5	45.3	
Post et al. [19]	41.3	40.0	36.5	64.7	65.3	
Kumar et al. [21]	29.8	29.8	25.3	_	_	

- WER on Spanish ASR
 - o seq2seq model outperforms classical GMM-HMM [19] and DNN-HMM [21] baselines

	Fisher			Callhome	
	dev	dev2	test	devtest	evltest
Ours	58.7	59.9	57.9	28.2	27.9
Post et al. [19]	_	_	58.7	_	27.8
Kumar et al. [21]	_	65.4	62.9	_	_

- BLEU score on Spanish-to-English text translation
 - o seq2seq NMT (following [Wu et al, 2016]) slightly underperforms phrase-based SMT baselines

Experiments: End-to-end speech translation

N. 1.1		Fisher		Callhome	
Model	dev	dev2	test	devtest	evitest
End-to-end ST ³	46.5	47.3	47.3	16.4	16.6
Multi-task ST / ASR ³	48.3	49.1	48.7	16.8	17.4
ASR→NMT cascade ³	45.1	46.1	45.5	16.2	16.6
Post et al. [19]	_	35.4	_	_	11.7
Kumar et al. [21]	_	40.1	40.4	-	_

- BLEU score (higher is better)
- Multi-task > End-to-end ST > Cascade >> non-seq2seq baselines
- ASGD training with 10 replicas (16 for multitask)
 - o ASR model converges after 4 days
 - o ST and multi-task models continue to improve for 2 weeks

Example output: compounding errors

ASR

ref: "sí a mime gusta mucho bailar merengue y salsa también"

hyp: "sea me gusta mucho bailar merengue y sabes también"

hyp: "sea me gusta mucho bailar medio inglés"

hyp: "o sea me gusta mucho bailar merengue y sabes también"

hyp: "sea me gusta mucho bailar medio inglés sabes también"

hyp: "sea me gusta mucho bailar merengue"

hyp: "o sea me gusta mucho bailar medio inglés"

hyp: "sea no gusta mucho bailar medio inglés"

hyp: "o sea me gusta mucho bailar medio inglés sabes también"

Cascade: ASR top hypothesis -> NMT

hyp: "i really like to dance merengue and you know also"

End-to-end ST

ref: "yes i do enjoy dancing merengue and salsa music too"

hyp: "i really like to dance merengue and salsa also"

hyp: "i like to dance merengue and salsa also"

hyp: "i don't like to dance merengue and salsa also"

hyp: "i really like to dance merengue and salsa and also"

hyp: "i really like to dance merengue and salsa"

hyp: "i like to dance merengue and salsa and also"

hyp: "i like to dance merengue and salsa"

hyp: "i don't like to dance merengue and salsa and also"

- ASR consistently mis-recognizes "merengue y salsa" as "merengue y sabes" or "medio inglés"
- NMT has no way to recover

Conclusions

- Proof of concept end-to-end model for conversational speech translation
 - without performing intermediate speech recognition,
 nor requiring any supervision from the source language transcripts*
 - without explicitly training or tuning separate language model or text translation model
 - no need to optimize model combination
- Identical model architecture and beam search decoding algorithm can be used for both speech recognition and translation
 - it turns out that sequence-to-sequence models are quite powerful
- *Can further improve performance by multi-task training ASR and ST models
 - o regularization effect of encouraging encoder to learn a representation suitable for both tasks

References

- [Bérard et al, 2016] A. Bérard, O. Pietquin, C. Servan, and L. Besacier, "Listen and translate: A proof of concept for end-to-end speech-to-text translation," NIPS Workshop on End-to-end Learning for Speech and Audio Processing, 2016.
- **[Duong et al, 2016]** L. Duong, A. Anastasopoulos, D. Chiang, S. Bird, and T. Cohn, "An attentional model for speech translation without transcription," *NAACL-HLT*, 2016.
- **[Bahdanau et al, 2015]** D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," *ICLR*, 2015.
- **[Chan et al, 2016]** W. Chan, N. Jaitly, Q. Le, and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," *ICASSP*, 2016.
- **[Chorowski et al, 2015]** J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, "Attention-based models for speech recognition," *NIPS*, 2015.
- **[Zhang et al, 2017]** Y. Zhang, W. Chan, and N. Jaitly, "Very deep convolutional networks for end-to-end speech recognition," *ICASSP*, 2017.
- [Post et al, 2013] M. Post, G. Kumar, A. Lopez, D. Karakos, C. Callison-Burch, and S. Khudanpur, "Improved speech-to-text translation with the Fisher and Callhome Spanish–English speech translation corpus," *IWSLT*, 2013.
- **[Kumar et al, 2015]** G. Kumar, G. W. Blackwood, J. Trmal, D. Povey, and S. Khudanpur, "A coarse-grained model for optimal coupling of ASR and SMT systems for speech translation." *EMNLP*, 2015.

Extra slides

End-to-end model: tuning

Performance improves with deeper decoder

	Num de	coder la	ayers D	
1	2	3	4	5
43.8	45.1	45.2	45.5	45.3

 Best speech translation performance in multitasked model when full encoder is shared across both tasks

Num sh	ared en	coder LS	TM layers
3 (all)	2	1	0
46.2	45.1	45.3	44.2

Seq2seq Speech Translation: Example attention

- translation model attends to the beginning of input (i.e. silence) for the last few letters in each word
 - o already made a decision about word to emit, just acts a language model to spell it out.

