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Single Channel Source Separation
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* Given a monoaural signal composed of multiple sources

* e.g. multiple speakers, speech + music, speech +
background noise

* Want to separate the constituent sources

* For noise robust speech recognition, hearing aids

ROSA
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Missing Data Masks

Mixture Mask — regions where speech energy dominates
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* Leverage the sparsity of audio sources - only one source is
likely to have a significant amount of energy in any given
time-frequency cell

* |If we can decide which cells are dominated by the source of
interest (i.e. has local SNR greater than some threshold),
we can filter out noise dominated cells (“refiltering” [3])

LAlo* Create a binary mask that labels each cell of the
spectrogram as missing or reliable
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Mask Estimation As Classification [4]

* Goal is to classify each spectrogram cell as being reliable
(dominated by speech signal) or not

* Separate classifier for each frequency band

* Train on speech mixed with a variety of different noise
signals (babble noise, white noise, speech shaped noise,
etc...) at a variety of different levels (-5 to 10 dB SNR)

* Features: raw spectrogram frames

* current frame + previous 5 frames (~ 40 ms) of
context

Lab
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The Relevance Vector Machine [5]

SVM: error=9.48% vectors=44 RVM: error=9.32% vectors=3

* Bayesian treatment of the SVM
* Kernel classifier of the form:
y(zlw,v) =) w,K(z,v,)+ wy
* 7z = data point to be classified

Lab * v, = nth support vector
* w, = weight associated with the nth support vector
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RVM Versus SVM

e Pros

* Huge improvement in sparsity over SVM (~ 50 rvs vs.
~ 450 svs per classifier on this task) - faster
classification

* Wrap vy in a sigmoid squashing function to estimate
posterior probability of class membership.

1
1 e e—y(Z|W,V)

P(t=1|z,w,v) =

* Masks are no longer strictly binary. Can use RVM to
estimate the probability that each spectrogram cell is
reliable.

* Cons
LAl ¢ RVM training is significantly slower

aboratory for the
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CASA Pitch-based Masking [1]
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* Most energy in speech signals is associated with the
pseudo-periodic segments of vowel sounds

* Get envelopes of auditory filter outputs

* Find strong periodicities in short-time autocorrelation of
each envelope

* Sum each channel to find single dominant periodicity

* Channels whose autocorrelation indicated energy at this
Lab period are added to the target mask
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Missing Data Reconstruction [2]

* What if a significant part of the signal is missing?
* Want to fill in the blanks in spectrogram of mixed signal

* Do MMSE reconstruction on missing dimensions using

signal model of spectrogram frames - GMM trained on
clean speech

* Marginalize over missing dimensions to do inference
P(aalk) = PN (aalinas o) + (L= P(ra)) [ NGl as01.0)dz

* MMSE estimator reconstructs by mixing the observed
signal and GMM reconstruction based on the probability
that each cell is reliable:

Lab %4 = Elz4|z] = P(ra)zq + (1 — P(rq) ZP k|2) bk
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Experiments

* Speech signal: single male speaker from audio book
recording

* Training noise signals: Babble noise, speech shaped noise,
factory noise 1

* Qut of model noise signals used for testing: car noise,
white noise, factory noise 2, music

* RVM trained on 20s of speech + noise

* 512 component GMM trained on 80s of clean speech

Lab
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Experiments - Results
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Experiments - Results

* GMM reconstruction outperforms simple refiltering since
the GMM reconstruction can fill in the blanks

* Soft masks give about 1 dB improvement over hard masks
* CASA masks not as good as RVM masks

* Still room for improvement in mask estimation based on
performance using ground truth masks

Lab
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Experiments - Results
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* False positive rate of CASA masks is much higher than
that of RVM masks.

* Major problem with CASA mask is added noise. Deleted
LA signal is not very significant in terms of signal energy

¢ ‘RVM mask deletes a significant amount of signal energ
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Experiments - Results
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* RVM mask is significantly more informative about ground
truth mask than CASA mask
Lab,

Some information in CASA mask is not captured by RVM
mask
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Experiments - Results
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* (Clear SNR boost when mixed signal at low SNR

* RVM clearly outperforms CASA system

* Both systems perform poorly on music noise
* RVM not trained on highly pitched interference
Lab e .
* CASA system can't distinguish between voiced speech
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Spectrograms

Clean speech signal

Speech + factory2 noise

Ground truth mask
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