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ABSTRACT

Most automatic chord recognition systems follow a standard
approach combining chroma feature extraction, filtering and
pattern matching. However, despite much research, there
is little understanding about the interaction between these
different components, and the optimal parameterization of
their variables. In this paper we perform a systematic evalu-
ation including the most common variations in the literature.
The goal is to gain insight into the potential and limitations
of the standard approach, thus contributing to the identifi-
cation of areas for future development in automatic chord
recognition. In our study we find that filtering has a signifi-
cant impact on performance, with self-transition penalties
being the most important parameter; and that the benefits
of using complex models are mostly, but not entirely, offset
by an appropriate choice of filtering strategies.

1. INTRODUCTION

Chords are defined by the occurrence of harmonically re-
lated musical notes, either simultaneously or in quick suc-
cession. They are the smallest and most fundamental struc-
tures of the tonal system, which, it can be argued, makes
them particularly adept at representing western popular mu-
sic. Therefore, their identification is of great importance
to a wide variety of applications in computer music, in-
formation retrieval and musicology. Chord transcriptions,
however, are not readily available for most recorded mu-
sic and can only be generated by highly-trained musicians.
This motivates the development of automatic approaches
to chord recognition, and explains the interest that this task
has generated on the music computing community over the
last decade.

A number of approaches to automatic chord recognition
are discussed in the literature, several of which are men-
tioned in this paper. Notable amongst those, are the works
of Fujishima [1], which introduced the use of chroma fea-
tures to represent signal content, and of Sheh and Ellis [2],
which pioneered the use of hidden Markov models (HMM)
for chord recognition. It can be argued that all subsequent
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works are variations of the standard approach defined by
both those papers, comprising a combination of chroma
feature extraction, filtering and pattern matching, as shown
in Figure 1. This is attested to by the homogeneity of most
submissions to the yearly MIREX chord recognition task.

A direct consequence of this overlap is the existence
of a number of important system variables that cut across
approaches. Understanding these variables, their relation
and relative importance in recognition results, is necessary
in order to assess the limitations of the standard approach.
Unfortunately, save a few exceptions (e.g. [3]), the litera-
ture lacks a comprehensive and holistic assessment on how
parameter changes affect chord recognition.

The goal of this paper is to investigate the effect of com-
mon variables and to reveal their interrelationships, thereby
providing valuable information that can guide future devel-
opments in automatic chord recognition. To this end, we
perform a systematic evaluation including the most com-
mon and distinguishable variations in the literature. It must
be clarified that covering the full range of possible varia-
tions is beyond the scope of this study. Instead we choose to
use standard techniques for feature extraction and filtering,
and concentrate our evaluation on variations of filtering
parameters and the testing of different pattern matching
approaches.

The remainder of this paper is organized as follows:
Section 2 introduces the standard approach and discusses
common variations at each stage; Section 3 presents the
evaluation methodology and discusses the experimental
results; while Section 4 includes our conclusions and direc-
tions for future work.

2. ARCHITECTURE OF A CHORD
RECOGNITION SYSTEM

Most chord recognition systems share a common archi-
tecture comprised of four main stages: feature extraction,
pre-filtering, pattern matching and post-filtering as seen in
Figure 1. We discuss each of these steps in detail in the
following sections.

2.1 Feature Extraction

The most popular features used for chord recognition are 12-
dimensional Pitch Class Profile (PCP), or chroma features
[1–12]. Chroma features represent the energy present in
each of the twelve pitch classes, and are typically derived by
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Figure 1. The basic architecture of the standard approach to
automatic chord recognition (dotted lines indicate optional
steps).

mapping each frequency bin of the Discrete Fourier Trans-
form (DFT) spectrum to a corresponding pitch class. Many
variations on chroma feature extraction are documented in
the literature [4, 8, 9, 13, 14].

The most common approach is based on the constant-
Q transform, a spectral analysis technique in which the
frequency channels are spaced logarithmically [15]. The
constant-Q transform Xcq of an audio fragment x(n) can
be calculated as:

Xcq(k) =

L(k)−1∑
n=0

w(n, k)x(n)e−j2πfkn (1)

where k is the bin position, w(n, k) is a window function
of length L(k), and fk is the center frequency of the kth

filter bank. The calculation of the center frequency fk is
based on the frequencies of the equal tempered scale with:

fk = 2k/βfmin (2)

where β is the number of bins per octave, and fmin is the
minimum analysis frequency. From the constant-Q spec-
trum Xcq, the β-bin constant-Q chroma can be calculated
as:

Ccq(b, n) =

M∑
m=0

|Xcq(b+mβ, n)| (3)

where b ∈ [1, β], andM is the total number of octaves in the
constant-Q spectrum determined by the maximum analysis
frequency fmax. Finally the dimensionality of the β-bin
chroma features computed in (3) is reduced to 12 bins by
averaging adjacent bins using β/12-wide non-overlapping
Gaussian windows.

The noteworthy thing in this stage is that most systems
extract a chromagram with fixed frame rates (i.e. hop size)
of 24 - 256 ms, which is significantly faster than the typ-
ical rate of chord changes in music. Only a few systems
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(b) 96 ms hop size
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(c) 96 ms hop size after smoothing with N = 15

Figure 2. Chromagrams computed from the first 20 seconds
of “Let It Be”.

(e.g. [10]) use chroma features extracted from segmented
audio frames with variable (and often slower) rates such
as beat-synchronous chroma. Errors in the initial feature
analysis, e.g. onset detection or beat tracking, in such sys-
tems propagate through the subsequent processing stages
and can hurt overall performance.

In this paper we follow the fixed frame rate approach in
order to focus on the effects of the remaining processing
stages on overall performance. We use β = 36, with the
analysis performed between fmin = 65.4Hz and fmax =
1046.5Hz 1 . The resulting window length and hop size are
8192 (186 ms) and 4096 (93 ms) samples respectively at
44100 Hz sample rate.

2.2 Pre-filtering

In order to precisely identify chord boundaries the frame
rate of the chroma features must be faster than the rate of
chord changes in a piece of music. This is demonstrated in
Figure 2 (a) and (b) which compare chromagrams computed
using 1 second and 96 ms hop sizes, respectively. The lower
precision in Figure 2(a) is clearly visible. For example, the
chord change at 11.5 seconds visible in Figure 2(b) is not
present in Figure 2(a) at all. Moreover, the longer window
exaggerates the influence of transient noise. For example,
the short burst of noise in the A pitch class at 14 seconds in
Figure 2(b), is drawn out over a full second in Figure 2(a).

However, the disadvantage of using such a short window
is that the frames of the resulting chromagram are indepen-
dent of the long term trend of the signal and respond to local
changes, thus becoming sensitive to transients and noise in
the signal. A popular technique to cope with this problem is
to pre-process the chromagram prior to pattern matching us-
ing a low pass filter [1, 3–5, 8, 9, 11]. In this paper, we use

1 In popular music, the harmonics of a musical note are usually stronger
than the non-harmonic components up to 1 kHz [16].



a moving average filter which can be calculated as follows:

ĉ(n) =
1

N

N−1∑
τ=0

c

(
n+ τ − N − 1

2

)
(4)

where c(n) is a frame of the chromagram, ĉ(n) is a frame
of the smoothed chromagram and n is the frame index. In
this paper, N = 0 is defined as no filtering.

Intuitively, this technique improves pattern matching
because it minimizes the effect of transients and noise in the
signal by smoothing the features across neighboring frames.
Figure 2(c) shows an example of the output of this process.
The noise between 13 and 15 seconds in Figure 2(b) are
filtered out in Figure 2(c).

2.3 Pattern Matching

The function of the pattern matching stage is to measure
the fit of a set of predefined chord models, corresponding to
each of the 24 major and minor triads, to each frame of the
input chromagram, thus classifying each frame as being one
of the 24 chords. The two most common approaches are
based on a deterministic chord template generated by hand
or a probabilistic chord model trained from examples of
real music. The former approach is quite simple, but many
variations of the probabilistic approach have been proposed.
In this paper, we evaluate deterministic chord templates and
three probabilistic chord models.

2.3.1 Binary chord template

A binary chord template is the simplest and one of the most
popular chord models [1, 3–5, 7, 8]. This deterministic
chord model is manually generated based on knowledge of
the notes used in musical chords. In a binary chord template
vector, each component corresponding to a chord-tone 2 is
set to 1, and the other components are set to 0. 3 While
some systems use variations of the binary chord template
that incorporate information about higher harmonics pro-
duced by each chord-tone, recent studies have shown that
simple binary chord templates are sufficient to obtain a
good level of accuracy [7].

2.3.2 Probabilistic chord models

More sophisticated chord models are created by defining
probability distributions for each chord class. A popular
choice is the multivariate Gaussian distribution. In some
systems, the Gaussian chord models are defined manually
as with binary templates [3, 5]. More commonly, the distri-
bution parameters are estimated from labeled data.

More precise chord models in the form of Gaussian mix-
ture models (GMM) are sometimes constructed instead of
single Gaussian models [12, 17]. Such models use multiple
Gaussian distributions to represent each chord. Different
components represent more nuanced instantiations of each
chord in the training data, producing a more precise fit. This
comes at the cost of requiring more sophisticated training

2 The pitches which make up a chord are called chord-tones and any
other pitches are called non-chord-tones.

3 For example, the binary template for a “C Maj” triad is [ 1 0 0 0 1 0 0
1 0 0 0 0 ] where the left to right order of the vector components follows
the twelve-tone equally tempered scale from C.

using an Expectation-Maximization (EM) algorithm and
increased computation when computing probabilities.

Finally, Khadkevich and Omologo [12] use a more com-
plex chord model based on hidden Markov models (HMM)
which enforces temporal continuity constraints not present
in the other chord models. This chord model follows the
topology typically used in automatic speech recognition,
consisting of a 3-state, left-to-right HMM with the emission
probability under each state consisting of a GMM.

All of the probabilistic models described in this section
use Gaussian distributions with either diagonal or full co-
variance matrices. In most cases a diagonal covariance
matrix is used under the assumption that the feature vec-
tor components are uncorrelated. In contrast, full covari-
ance matrices capture correlations between different pitch
classes. In this paper, we prepared two versions of prob-
abilistic chord models, each with a diagonal and a full
covariance matrices. For GMM chord models, we use 5, 10,
15, 20 and 25 mixture components.

The trained Gaussian and GMM models are denoted
M`cv, where ` specifies the number of components in the
model and cv specifies the type of covariance matrix, diag
or full; e.g. a single Gaussian model with diagonal covari-
ances is referred to as M1diag and a 5 component GMM
with full covariance is M5full. The 3-state HMMs are de-
noted as H`cv, and follow the same conventions as GMMs.
For HMM models, ` indicates the number of mixture com-
ponents used in each state of the model.

The parameters of the chord models are estimated from
annotated training data using the EM algorithm. During
training, the training data is segmented into 12 major triad
and 12 minor triad segments based on the chord annotations.
In order to compensate for the limited amount of training
data, every chord segment is transposed to the key of C
and this key-normalized data is used to train C-major and
C-minor models. The trained chord models are then re-
transposed to the remaining 11 major and 11 minor keys to
define the remaining chord models.

2.4 Post-filtering

The post-filtering stage shown in Figure 1 is used to smooth
the sequence of predicted chord labels over time, thereby
minimizing the number of spurious chords that only last
for a small number of frames. Such mis-detections can be
caused by short bursts of noise, which are very common in
real music signals (e.g. see in Figure 2(b)). In most systems,
post-filtering is performed with a Viterbi decoder, while
some systems based on chord templates use a median filter
instead [4, 7]. The Viterbi decoder finds the most likely
sequence of chords based on the chord-type probabilities
computed in the pattern matching stage.

The performance of the Viterbi decoding process is deter-
mined by the transition probability matrix, which describes
the first-order temporal relationship between chords. Many
researchers have concentrated on finding the optimal setting
for these parameters. One approach has been to generate
the matrix manually based on knowledge of music theory
[3], while others have estimated the transition probabilities
from music annotations [18].
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Figure 2: State-transition distribution A: (a) initializa-
tion of A using the circle of fifths, (b) trained on Another
Crossroads (M. Chapman), (c) trained on Eight days a
week (The Beatles), and (d) trained on Love me do (The
Beatles). All axes represent the 24 lexical chords (C→B
then c→b)

We have chosen a rather narrow space of chords. We
did not include dyads nor other more complex chords such
as augmented, diminished, 7th or 9th chords. Our intu-
ition is that by including too many chords, both complex
and simple, we run the risk of “overfitting” our models
to a particular piece of music. As a quick thought exper-
iment, imagine if the set of chords were simply the en-
tire

∑

n=1..12

(12
n

)

= 212 − 1 possible combinations of 12
notes. Then the set of chord labels would be equivalent
to the set of 12-bin chroma and one would not gain any
insight into the harmonic “substance” of a piece, as each
observation would likely be labeled with itself. This is
an extreme example but it illustrates the intuition that the
richer the lexical chord set becomes, the more our feature
selection algorithms might overfit one piece of music and
not be useful for the task of determining music similarity.

While it is clear that the harmony of only the crudest
music can be reduced to a mere succession of major and
minor triads, as this choice of lexicon might be thought to
assume, we believe that this is a sound basis for a proba-
bilistic approach to labeling. In other words, the lexicon is
a robust mid-level representation of the salient harmonic
characteristics of many types of music, notably popular
music.

4.2 HMM initialization

In this paper we are not going to cover the basics of hid-
den Markov modeling. This is far better covered in works
such as (Rabiner, 1989) and even by previous music HMM
papers cited above. Instead, we begin by describing the
initialization procedure for the model. As labeled training
data is difficult to come by, we forgo supervised learning
and instead use the unsupervised mechanics of HMMs for
parameter estimation. However, with unsupervised train-
ing it is crucial that one start the model off in a reason-

able state, so that the patterns it learns correspond with
the states over which one is trying to do inference.

4.2.1 Initial state distribution [π]

Our estimate of π is 1
24 for each of the 24 states in the

model. We have no reason to prefer, a priori, any state
above any other.

4.2.2 State transition matrix [A]

Prior to observing an actual piece of music we also do not
know what states are more likely to follow other states.
However, this is where a bit of musical knowledge is use-
ful. In a song, we might not yet know whether a C major
triad is more often followed by a B! major or a D ma-
jor. But it is reasonable to assume that both hypotheses
are more likely than an F" major. Most music tends not to
make large, quick harmonic shifts. One might gradually
wander from the C to the F", but not immediately. We use
this notion to initialize our state transition matrix.
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The figure above is a doubly-nested circle of fifths,
with the minor triads (lower case) staggered throughout
the major triads (upper case). Triads closer to each other
on the circle are more consonant, and thus receive higher
initial transition probability mass than triads further away.
Specifically, the transition C→C is given a probability

12+ε
144+24ε , where ε is a small smoothing constant, C→e =

11+ε
144+24ε and then clockwise in a decreasing manner, un-

til C→F" = 0+ε
144+24ε . At that point, the probabilities be-

gin increasing again, with C→b! = 1+ε
144+24ε and C→a =

11+ε
144+24ε .

The entire 24×24 transition matrix, as seen in Figure
2(a), is constructed in a similar manner for every state,
with a state’s transition to itself receiving the highest ini-
tial probability estimate, and the remaining transitions re-
ceiving probability mass relative to their distance around
the 24-element circle above.

4.2.3 Observation (output) distribution [B]

Each state in the model generates, with some probability,
an observation vector. We assume a continuous observa-
tion distribution function modeled using a single multi-
variate Gaussian for each state, each with mean vector µ
and covariance matrix Σ.

Sheh and Ellis (2003) use random initialization of µ
and a Σ covariance matrix with all off diagonal elements
set to 0, reflecting their assumption of completely uncor-
related features. We wish to avoid this assumption. One
of the main purposes of this paper is to argue that musical
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Figure 3. (a) Doubly-nested circle of fifths, (b) Chord
transition probability matrix TC5.

Much of the previous work contains little discussion of
the self-transition probability, which describes the probabil-
ity of staying in the same chord from frame to frame. While
some previous work reports improving the accuracy rate
by manipulating the transition matrix, we argue that most
of the improvement is contributed by a relatively high self-
transition probability, which essentially acts to minimize the
number of chord transitions. In a fast-frame-rate analysis,
the probability of remaining in a chord is larger than that of
moving to another chord, since the rate of chord changes is
much slower than the frame rate. Thus, finding the optimal
parameter for the self-transition probability tends to have
more influence than the other parameters.

To evaluate this assumption, we define the transition
penalty P , which is widely used in HMM-based speech
recognition systems. This penalty adjusts the strength of
the self-transition probability relative to transitions between
different chords. It is applied as follows:

log(âij) =

{
log(aij)− log(P ) for i 6= j

log(aij) for i = j
(5)

where A = [aij ] is the original transition probability matrix
and Â = [âij ] is the modified matrix with penalty P .

In the case of the 3-state HMM model, this penalty is
only applied to the transitions between chords, not transi-
tions within the 3 states comprising the chord model. Since
the internal HMM states already enforce temporal conti-
nuity within a chord (similar to self-transition probability),
we set the diagonal entries of the chord transition matrix
used for HMM post-filtering to zero. Therefore, P only
changes the transition probabilities between different chord
HMMs without touching the internal transitions between
the 3 states.

We also evaluate the effect of different transition proba-
bility matrices on performance. As a baseline we define a
uniform transition matrix TU in which all transitions have
the same probability (1/24 in our task).

For the transition probability matrix derived from music
theory, we define a circle of fifths transition matrix TC5, as
proposed by [5]. In TC5, the transition probability between
two chords is derived from the distance between two chords
in the doubly-nested circle of fifths (see Figure 3(a)). In this
paper, for a fair evaluation of the parameter P (described in
Section 2.4) against TU , the diagonal entries of TC5 (self-
transition probabilities) are adjusted to 1/24 and the other
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Figure 4. (a) TB and (b) TU , both for 24 chord detection
task after applying the transition penalty P = 2.0

members in each row are normalized to sum to 23/24 (see
Figure 3(b)).

Finally, we define a transition matrix estimated from
training data, TB . TB , is estimated from bigrams of sym-
bolic data in the training set. As in the training procedure
for the chord models described in Section 2.3, we only cal-
culate chord transitions relative to the current chord, i.e. we
assume that all transitions happen from a root of C major
or C minor. For example, the transitions C→ Am and E
→ C#m are both counted as C → Am (I → vi). 4 The
key-normalized bigrams are then transposed to the other
major and minor roots to form the final matrix. We adjust
the diagonal entries to 1/24 as we do for TC5. Figure 4
shows an example of the transition matrices TB and TU
after applying the transition penalty P using Eqn. (5).

3. EXPERIMENTS

In this section we describe a series of experiments to evalu-
ate the effect of each processing stage on chord recognition
performance. We evaluate the system variations using the
well-known Beatles data set, 180 annotated songs from
12 Beatles albums (containing 13 discs).The ground truth
chord annotations of the songs are kindly provided by C.
Harte [19]. 5 The evaluations are performed on 12 major,
12 minor and a no-chord detection task.

Each experiment is performed using a 13-fold cross val-
idation. For each fold, one album is selected as a test set,
and the remaining 12 albums are used for training. The
chord recognition rate is calculated as follows:

Accuracy =
total duration of correct chords

total duration of dataset
×100% (6)

and is averaged across all cross-validation folds.

3.1 Pattern matching without filtering

In order to isolate the power of different pattern matching
techniques from the effect of the other processing stages we
evaluate the different chord models described in Section 2.3

4 In this paper, Roman Numerals are open used to indicate the harmonic
relationship between two chords without reference to actual chord symbols.
In this notation, the first seven Roman Numerals represent a major scale
degree from the root. Capital letters are used for major triads, while
lowercase letters are used for minor triads, and a flat(b) or sharp(#) in front
of a Roman Numeral lowers or raises the diatonic pitch by a half step.
e.g. Both C → Am and E → C#m can be expressed as I→ vi

5 http://isophonics.net/content/reference-annotations-beatles
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Figure 5. Chord classification errors from the experiment
described in Section 3.1. The results are key-normalized to
major (top) and minor (bottom) triads and averaged across
all roots. The center labels (I of major triad detection and
i of minor triad detection) represent correct classification
and the remaining labels represent misclassified chords in
Roman Numeral notation. The order of the labels follows
the order of the doubly-nested circle of fifths in Figure 3(a).

without performing pre- or post-filtering. The 3-state chord
HMM is excluded, because it requires post-filtering. The
results are shown in Table 1.

Gauss. # 1 5 10 15 20 25 BT

M
full 46.8 45.0 44.7 45.1 46.9 46.8

46.69
diag 40.1 42.1 42.6 43.6 45.5 45.5

Table 1. Average accuracies of pattern matching methods
with different chord models without filtering.

It would be reasonable to expect that performance should
improve with increasing complexity of the chord model.
However, the results in Table 1 contradict this expectation.
In fact, none of the trained probabilistic models significantly
outperform the simple binary template BT . All of the
probabilistic models using diagonal covariance perform
worse than BT , while those that utilize full covariance have
performance roughly on par with BT . Another surprising
result is that the performance of the GMM systems is no
better than that of the single Gaussian chord model M1full.

All of the chord models based on full covariance ma-
trices perform better than the corresponding models based
on diagonal covariance matrices. This gap is reduced by
increasing the number of mixture components in the GMM.
This trend is almost perfectly maintained across all experi-
ments, therefore we only report results using full covariance
matrices in the remaining experiments.

The distribution of chord detection errors is shown in
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Figure 6. Average chord detection accuracy as a function
of moving average pre-filter order N .

Figure 5. The majority of errors are the result of confusions
between harmonically related chords, i.e. those which share
the same notes. For example, the chords in a parallel rela-
tionship (I and i), share a common root and fifth, and have
only a semi-tone difference between the thirds. The fig-
ure also shows that actually M25full outperforms M1full
and BT on minor chord detection. However, this is not
reflected in the total overall results shown in Table 1, only
25% of the test set is comprised of minor chords, and so the
decreased performance on major chord constributes more
to the average performance.

3.2 Effect of pre-filtering

In this section we evaluate the effect of the pre-filtering pro-
cedure described in Section 2.2 on chord recognition perfor-
mance. The chord models are retrained for each setting of
the smoothing filter length N , and the filtered chromagrams
are used for testing. The 3-state HMM template is excluded
for the reasons described in Section 3.1.

The results are shown in Figure 6. Overall, pre-filtering
improves performance over the results in Section 3.1 by
about 20%. However, the best results for all chord models
are almost the same (65.6% ± 0.1) except M1full (66.3%).
The optimal N values for the chord models are also similar
(N = 15). Once again, the number of mixture components
in the GMMs has little effect on performance. The highest
accuracy came from the simplest probabilistic model.

Many of the mis-classified frames in the previous exper-
iment consist of very short (1− 5 frame) segments caused
by transient noise similar to that shown in Figure 2(b). The
large improvement shown in this section is due to the fact
that the pre-filtering process largely suppresses this noise.

It seems that training hurts the performance due to over-
fitting to the small training set and to reduced data variance
caused by smoothing the features. In Figure 6, the accu-
racies of the 25 Gaussian models decrease faster than the
single Gaussian models with increasing N . In other words
the smoothed data tends to lead to overfitting, especially for
chord models containing a large number of parameters.

Figure 7 shows the distribution of chord errors. As ex-
pected, a large portion of the performance improvement
relative to the results reported in Section 3.1 is the result
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Figure 7. Major(top) and Minor(bottom) distribution of detections for different N

of fewer confusions between harmonically related chords.
As a result, all the distributions of detections are similar to
each other at the optimal N . The trained Gaussian model
doesn’t show any significant improvement against the bi-
nary template in this experiment.

3.3 Effect of post-filtering

In this experiment we evaluate the use of the different tran-
sition probability matrices defined in Section 2.4 and the
effect of the transition penalty P . The pre-filtering parame-
ter N is therefore fixed to 0 while P is varied. In order to
smooth the output of BT , pseudo probabilities are calcu-
lated by taking the reciprocal of the Euclidean distances be-
tween chromagram frames and the chord templates. These
are then passed through the Viterbi decoder.

Gauss. # 1 5 10 15 20 25 BT

TU

P 15 23 22 20 19 15 1.25
M 67.9 70.3 69.6 69.3 73.2 74.4 70.4
P 16 18 14 11 8 9
H 67.4 71.7 72.5 72.7 74.4 75.0

TC5

P 15 22 22 20 19 16 1.5
M 68.0 70.4 69.8 69.6 73.3 74.7 70.2
P 16 18 14 10 9 8
H 67.6 71.9 72.6 72.9 74.5 75.0

TB

P 15 22 21 20 18 16 2.5
M 68.5 70.7 70.3 70.2 73.8 75.1 70.6
P 16 15 16 10 9 8
H 68.2 72.2 73.0 73.5 75.1 75.6

Table 2. Accuracy of each chord model using different
chord transition matrices. Each model-transition matrix
combination is shown with the P value that maximizes
accuracy.

The results are summarized in Table 2. For all systems,
post-filtering shows a significant improvement over the
results in the previous section, especially in the case of
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Figure 8. Average accuracy as a function of P using the
TU transition matrix (N = 0).

GMM chord models. Another surprising trend is that there
is little difference in performance between the different
transition matrices. The largest difference between them is
only about 0.8%.

In addition, as shown in Figure 8, the parameter P has
different effects on each of the chord models. The BT
plot has a very steep curve and peaks at a smaller setting
than any other model (P = 1.25). The system is overly
sensitive to the transition penalty because the likelihoods
of each chord class under this model tend to be very close
together (i.e. it is not very discriminative), so, for large P ,
the transition probability overwhelms the likelihood.

On the contrary, the HMM chord model is much less sen-
sitive to P than the other systems. This is due to the smooth-
ing caused by the high internal self-transition probabilities
already present within the chord models. The maximum
accuracies of H25full and M25full are almost identical at
each optimal P value. The two curves match up quite well
if that of M25full is moved about 10 units to the left.

3.4 Combined pre- and post-filtering

Finally, we explore the relationship between pre- and post-
filtering and evaluate all possible parameter combinations.



G. # 1 5 10 15 20 25 BT

N , P 7, 18 3, 23 3, 19 3, 18 3, 21 3, 17 3, 2.5

M 70.4 73.0 74.4 74.7 75.1 75.4 70.8

N , P 9, 7 3, 18 3, 13 3, 11 3, 11 3, 10

H 70.2 73.7 74.9 74.9 75.4 75.7

Table 3. The best accuracy of each chord model with TB
and optimal N and P .

Since, as described in Section 3.3, the exact transition ma-
trix has a very small effect on performance, we only utilize
TB in this experiment.

The optimal N,P parameter combination for each sys-
tem is shown in Table 3 along with the corresponding chord
recognition accuracy. The best results occur using relatively
little pre-filtering (N = 3) with transition penalty P similar
to the optimal settings found in the previous experiment.
The combination of both filtering stages has minimal effect
on the best performing system, however it does bring the
performance of the systems based on simpler GMM chord
models to the same level as the HMM systems. From this
we can conclude that the additional pre-filtering stage can be
used in place of the more computationally complex HMM
chord model without significantly affecting performance.

Compared to the results of post-filtering alone in Table 2,
pre-filtering increases the accuracy of all chord models. The
smoothing across very short frames (N = 3) yields signifi-
cantly improved accuracy, especially in the case of GMM
chord models. However, this effect decreases as number
of Gaussians increases. For M25full the smoothing has
no significant effect on performance. Overall, the combi-
nation of pre- and post-filtering decreases the difference
in performance between the GMM chord models. More
than doubling the size of the model from 10 to 25 mixture
components increases performance by only 1%.

A similar trend can be seen in the performance of the
HMM systems. More notably, the small gaps (less than 1%)
between GMM and HMM systems with the same number
of Gaussians implies that additional pre-filtering can com-
pensate for the additional smoothing present in the more
complex model. The 3-state left-to-right HMM architec-
ture requires that each recognized chord have a minimum
length of 3 frames. As described in the previous section,
this has an implicit smoothing effect and provides better
time-persistence than a single frame level chord detection.
The results in Table 3 demonstrate that the overall effect is
similar to that of the 3 frame moving average filter.

3.5 Summary

Table 4 summarizes the experiments described in this sec-
tion. All combinations of filtering strategies and pattern
matching techniques are shown. T-tests show that differ-
ences in accuracy greater than 1% are statistically signifi-
cant (p < 0.01). The performance improvements seen when
moving down each column demonstrate the very large im-
pact of filtering on the accuracy of chord recognition system.
Post-filtering has the largest impact, primarily due to the
self-transition penalties, and the combination of pre- and

Chord
Models BT M1 M25

3-state HMM
H1 H25

No Filtering 46.69 46.76 46.77

Pre-filtering 65.50 66.27 65.72

Post-filtering 70.60 68.52 75.14 68.16 75.56

Pre & Post 70.82 70.44 75.40 70.23 75.70

Table 4. The best results of each chord model for each
experiment.

post-filtering leads to relatively small improvement over the
optimal choice of post-filter alone, however this improve-
ment was only statistically significant for M1 and H1. De-
spite the great deal of research investigating different chord
models, we have observed relatively small performance
differences between the models in our experiments. Given
optimal filtering settings, all systems perform within 5%
of each other (bottom row of Table 4). It is worth noting
that the chord models used most often in the literature are
based on diagonal covariance matrices [2, 6, 12, 17, 18]. In
our experiments, diagonal covariance models performed an
average of about 2% lower than the corresponding models
based on full covariance matrices.

There is a general trend of improving performance with
increasingly complex chord models, but the effect is dom-
inated by the number of parameters used by each model,
i.e. the number of mixture components or states. The best
results are obtained using the most complex system based
on HMM chord models. The system contains the largest
number of parameters and therefore has the highest risk
of overfitting to the small training data set used in these
experiments.

4. CONCLUSION

This paper presents a systematic evaluation of increasingly
complex variations of the standard approach to automatic
chord recognition, with a focus on the impact of filtering
and pattern matching strategies. Experimental results show
that filtering, both before and after pattern matching, has
a significant impact on the accuracy of recognition. In
the case of pre-filtering we found that variations of the
parameter N have a similar effect across different models,
with the optimal value increasing performance by as much
as 20% upon the unfiltered case. Optimal post-filtering
can increase performance by little less than 30%, with high
self-transition probabilities (determined by the parameter
P ) being entirely responsible for this change. Unlike N ,
optimal values of P have to be carefully chosen for each
different model. Combining pre- and post-filtering brings
about only marginal improvement over the optimal choice
of post-filtering. Surprisingly, we found that the effect of
different transition matrices is negligible. This indicates
that, at fast frame-rates, any attempts to encode information
about likely chord transitions is rendered moot by the need
to enforce continuity in the estimations.

While the best overall results are obtained for M25full
and H25full, it is worth noting that the benefits of using



complex models are mostly offset by an appropriate choice
of filtering strategies. Notably, the best performance using
simple binary template matching is only 5% less than the
best performance using a network of 3-state HMMs, with
mixtures of 25 full-covariance Gaussians per state. This
is troublesome not only because of the significant differ-
ence in computational cost and overall complexity between
these two models, but also because the extensive testing
and parameter selection on such a small and homogeneous
dataset most likely means that the difference is attributable
to overfitting and is not generalizable to other music.

Of course, these findings are only valid for fast, fixed-
rate features, and could be alleviated by slowing down the
feature rate, or by using variable-rate methods such as beat
segmentation. However, the former will have an impact on
accurate detection of chord transition boundaries (which, if
increases in accuracy are forthcoming, might be less of an
issue), while in the case of the latter, it is far from clear that
the current state of the art in beat tracking can ensure robust
performance across a wide variety of music, and thus avoid
issues of error propagation.

In either case, it is worth pointing out that lower feature
frame-rates will considerably reduce the amount of avail-
able data, which will in turn negatively affect our ability
to train complex models, such as the ones considered in
this paper. This, together with the above mentioned issues
of overfitting (which we believe to be widespread in chord
recognition research), highlights the need for data collection
as a necessary step in the development of better approaches.
More data will also support the use of discriminative mod-
els for pattern matching (which has proven successful in
MIREX-09 [20]) and for supervised training of complex dy-
namic models integrating rhythmic, harmonic and structural
analysis [10]. Finally, we have yet to evaluate the impact of
different feature extraction strategies and test new methods
(e.g. [14]) that have already shown promise in related music
analysis tasks.
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