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Acoustic modeling in 2015

his captain was thin and haggard
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Classify each 10ms audio frame into context-dependent phoneme state

Log-mel filterbank features passed into a neural network

Modern vision models are trained directly from the pixels,
can we train an acoustic model directly from the samples?
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Frequency domain filterbank: log-mel

waveform
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localization in time

pointwise nonlinearity

bandpass filtering

dynamic range compression

Bandpass filtering implemented using FFT and mel warping
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Time-domain filterbank

waveform

BP filter1 nonlinearity smoothing/decimation log/ 3
√

feature band 1

BP filter2 nonlinearity smoothing/decimation log/ 3
√

feature band 2

BP filterP nonlinearity smoothing/decimation log/ 3
√

feature band P

fine time structure

removed here! :)

Swap order of filtering and decimation, but basically the same thing

Cochleagrams, gammatone features for ASR (Schluter et al., 2007)
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Time-domain filterbank as a neural net layer

windowed
waveform
segment n

conv1 ReLU max pool stabilized log f1[n]

conv2 ReLU max pool stabilized log f2[n]

convP ReLU max pool stabilized log fP [n]

These are common neural network operations

(FIR) filter → convolution
nonlinearity → rectified linear (ReLU) activation
smoothing/decimation → pooling

Window waveform into short (< 300ms) overlapping segments

Pass each segment into FIR filterbank to generate feature frame
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Previous work: Representation learning from waveforms

Jaitly and Hinton (2011)

unsupervised representation learning using a time-convolutional RBM
supervised DNN training on learned features for phone recognition

Tüske et al. (2014), Bhargava and Rose (2015)

supervised training, fully connected DNN
learns similar filter shapes at different shifts

Palaz et al. (2013, 2015b,a), Hoshen et al. (2015), Golik et al. (2015)

supervised training, convolution to share parameters across time shifts

No improvement over log-mel baseline on large vocabulary task in
above work
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Deep waveform DNN (Hoshen et al., 2015)

Convolution
F filters
25 ms weights

Input
275 ms

Max pooling
25 ms window
10 ms step

Nonlinearity
log(ReLU(...))

Fully connected
4 layers, 640 units
ReLU activations

Softmax
13568
classes

convolution output
(F x 4401) nonlinearity output

(F x 26)

Choose parameters to match log-mel DNN
40 filters, 25ms impulse response, 10 ms hop
stack 26 frames of context using strided pooling: 40x26 “brainogram”

Adding stabilized log compression gave 3-5% relative WER decrease
Overall 5-6% relative WER increase compared to log-mel DNN
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CLDNN (Sainath et al., 2015a)

Combine all the neural net tricks:
CLDNN = Convolution + LSTM + DNN

Frequency convolution gives some pitch/vocal tract
length invariance
LSTM layers model long term temporal structure
DNN learns linearly separable function of LSTM state

4− 6% improvement over LSTM baseline

No need for extra frames of context in input:
memory in LSTM can remember previous inputs
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Waveform CLDNN (Sainath et al., 2015b)

Time convolution (tConv) produces a 40dim frame

35ms window (M = 561 samples), hopped by 10ms

CLDNN similar to (Sainath et al., 2015a)

Frequency convolution (fConv) layer:

8x1 filter, 256 outputs, pool by 3 without overlap
8x256 output fed into linear dim reduction layer

3 LSTM layers:

832 cells/layer with 512 dim projection layer

DNN layer:

1024 nodes, ReLU activations
linear dim reduction layer with 512 outputs

Total of 19M parameters, 16K in tConv

All trained jointly with tConv filterbank

tConv

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform

M samples

xt ∈ ℜP
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Experiments

US English Voice Search task,
1 Clean dataset: 3M utterances (∼ 2k hours) train, 30k (∼ 20 hours) test
2 MTR20 multicondition dataset:

simulated noise and reverberation

SNR between 5-25dB (average ∼ 20dB)
RT60 between 0-400ms (average ∼ 160ms)
Target to mic distance between 0-2m (average ∼ 0.75m)

13522 context-dependent state outputs

Asynchronous SGD training, optimizing a cross-entropy loss
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Compared to log-mel (Sainath et al., 2015b)

Train/test set Feature WER

Clean log-mel 14.0
waveform 13.7

MTR20 log-mel 16.2
waveform 16.2

waveform+log-mel 15.7

Matches performance of log-mel baseline in clean and moderate noise

3% relative improvement by stacking log-mel features and tConv output
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How important are LSTM layers? (Sainath et al., 2015b)

MTR20 WER
Architecture log-mel waveform

D6 22.3 23.2
F1L1D1 17.3 17.8
F1L2D1 16.6 16.6
F1L3D1 16.2 16.2

Fully connected DNN: waveform 4% worse than log-mel

Log-mel outperforms waveform with one or zero LSTM layers

Time convolution layer gives short term shift invariance,
but seems to need recurrence to model longer time scales
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Bring on the noise (Sainath et al., 2015c)

MTR12: noisier version of MTR20

12dB average SNR, 600ms average RT60, more farfield

Num filters log-mel waveform

40 25.2 24.7
84 25.0 23.7

128 24.4 23.5

Waveform consistently outperforms log-mel in high noise

Larger improvements with more filters
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Filterbank magnitude responses

mel
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Sort filters by index of frequency band with peak magnitude
Looks mostly like an auditory filterbank

mostly bandpass filters, bandwidth increases with center frequency

Consistently higher resolution in low frequencies:
20 filters below 1kHz vs ∼10 in mel
somewhat consistent with an ERB auditory frequency scale
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What happens when we add more filters?

> 80 filters below 1kHz:
overcomplete basis

Not all bandpass anymore

harmonic stacks
wider bandwidths
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What if we had a microphone array...

Build a noise robust multichannel ASR system by cascading:
1 speech enhancement to reduce noise

e.g. localization + beamforming + nonlinear postfiltering
2 acoustic model, possibly trained on the output of 1

Perform multichannel enhancement and acoustic modeling jointly?
Seltzer et al. (2004) explored this idea using a GMM acoustic model
we’re going to use neural nets
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Filter-and-sum beamforming

y [t] =
C−1∑
c=0

hc [t] ∗ xc [t − τc ]

s τ0τ1τ2τ3

x0[t − τ0]
x1[t − τ1]
x2[t − τ2]
x3[t − τ3]

align

Typical to have separate localization model estimate τc ,
and a beamformer estimate filter weights

Use P filters to capture many fixed steering delays

yp[t] =
C−1∑
c=0

hp
c [t] ∗ xc [t]

Just another convolution across a multichannel waveform
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Multichannel waveform CLDNN (Sainath et al., 2015c)

Convolution 
C x N x P weights 

Input 
C x M samples 
 

Max pooling 
M-N+1 window 
 

Nonlinearity 
log(ReLU(...)) 
1 X P 

convolution output 
(P x M-N+1) 
 

nonlinearity output 
(1 x P) 

Multichannel tConv layer

bank of filter-and-sum beamformers, but
without explicit localization and alignment
does both spatial and spectral filtering

Feeds into same CLDNN as in single channel case

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform
M x C samples

xt 2 <P

pool + 
nonlin

C time filters

tConv
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Experiments

MTR12 dataset, but simulating an 8 channel linear mic array

Look at different microphone subsets

1 channel: mic 1
2 channel: mics 1,8: 14cm spacing
4 channel: mics 1,3,6,8: 4cm-6cm-4cm spacing
8 channel: mics 1-8: 2cm spacing

100 different room configurations

Noise and target speaker location randomly selected for each utterance

Main test set with same conditions as training
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Compared to log mel (Sainath et al., 2015c)

Input Num filters 1ch 2ch 4ch 8ch

log-mel 128 24.4 22.0 21.7 22.0
waveform 128 23.5 21.8 21.3 21.1
waveform 256 - 21.7 20.8 20.6

Log-mel improves with additional channels (stack features from each
channel) (Swietojanski et al., 2013) but not as much as waveform

fine time structure discarded with the phase

Waveform improvements saturate at 128 filters with 2 channels

Continue to see improvements with 256 filters with 4 and 8 channels

can learn more complex spatial responses with more microphones,
allowing net to make good use of extra capacity in filterbank layer
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How many LSTM layers does it take?

Input Num filters Num LSTM layers WER

waveform, 2ch 128 1 25.8
waveform, 2ch 128 2 23.9
waveform, 2ch 128 3 21.8
waveform, 2ch 128 4 21.5

As in 1 channel case, modeling temporal context with LSTM layers is
key to getting good performance

Starts to saturate at 3 LSTM layers
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What’s a Beampattern?!

Magnitude response as a function of direction of arrival to microphone array

pass “multimic impulse” with different delays into filter, measure resp.
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What is this thing learning? Example filters
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Similar coefficients across channels but shifted, similar to steering delay

Most filters have bandpass freq. response, similar scale to 1ch

∼ 80% of the filters have a significant spatial response
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Even more example filters

Several filters with the same center
frequency, different null directions

Enables upstream layers to differentiate
between energy coming from different
directions in narrow bands
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Compared to traditional beamforming (Sainath et al., 2015c)

System 2ch 4ch 8ch

oracle D+S 22.8 22.5 22.4
waveform 21.8 21.3 21.1

Delay-and-sum (D+S) baseline using oracle time difference of arrival,
passed into 1ch waveform model

Despite lack of explicit localization waveform outperforms D+S

upper layers learn invariance to direction of arrival?
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Mismatched array geometry (Sainath et al., 2015c)

Spacing
System 14cm 10cm 6cm 2cm 0cm1

oracle D+S 2ch 22.8 23.2 23.3 23.7 23.5
waveform 2ch, 14cm 21.8 22.2 23.3 30.7 33.9
waveform 2ch, multi-geo 21.9 21.7 21.9 21.8 23.1

Oracle D+S more robust to mismatches in microphone spacing

Degraded performance if mic array spacing differs widely from training

“Multi-geometry” training set by sampling 2 channels with replacement
for each utterance in the original 8 channel set

net trained on this data becomes invariant to microphone spacing
also robust to decoding a single channel?!

1repeat signal from mic 1
Ron Weiss Training neural network acoustic models on (multichannel) waveforms in SANE 2015 27 / 31



Review: Filterbanks Waveform CLDNN What do these things learn Multichannel waveform CLDNN

Multigeometrained filters

multi-geo
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Still get bandpass filters, but without strong spatial responses
only 30% of the filters have a null
several filters primarily respond to only one channel

Upper layers of the network somehow learn to model directionality?
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Mismatched test (Sainath et al., 2015c)

System Simulated (14cm) Rerecorded (28cm)

waveform, 1ch 19.3 23.8
waveform, 2ch, 14cm 18.2 23.7
oracle D+S, 2ch 19.2 23.3
waveform, 2ch, multi-geo 17.8 21.1

*after sequence training

Slightly more realistic “Rerecorded” test set:

replay sources from eval set through speakers in a living room
record using an 8-channel linear microphone array with 4cm spacing
artificially mixed using same SNR distribution as MTR12set

Multigeometraining still works
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Conclusion

From feature engineering to... deep net architecture engineering:

Supervised training to learn filter coefficients, optimized jointly with
target objective

Waveform CLDNN matches log-mel on clean, outperforms it on noisy

Larger performance improvement with multichannel input

Secret sauce: LSTM layers

Multicondition training/data augmentation work really well:
clean and noisy, various mic array spacings
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Even more multicondition training

Test set
Input Train set Clean MTR20 MTR12

log-mel MTR20 10.9 12.6 25.8
log-mel MTR12 13.4 14.6 19.6
log-mel MTR20+12 11.1 12.3 19.6

waveform MTR12 13.7 14.5 18.6
waveform MTR20+12 11.0 12.6 18.4

*after sequence training

Training on very noisy data hurts performance in clean

CLDNNs have a lot of capacity:
Training on both recovers clean performance, still works well on noisy
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Why does this work? tConv / pooling (Sainath et al., 2015b)

Input window size Pooling Initialization MTR20 WER

25ms none random 19.9

35ms max random 16.4
35ms max gammatone fixed 16.4
35ms max gammatone 16.2

35ms l2 gammatone 16.4
35ms average gammatone 16.8

Pooling gives shift invariance over short (35 - 25 = 10ms) time scale

Poor performance without pooling - fixed phase
Best results with (ERB) gammatone initialization and max pooling

because of filter ordering assumed by fConv?
max preserves transients smoothed out by other pooling functions?

Not training tConv layer is slightly worse
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How important is frequency convolution? (Sainath et al., 2015b)

Input Architecture MTR20 WER

log-mel F1L3D1 16.2
waveform F1L3D1 16.2

log-mel L3D1 16.5
waveform L3D1 16.5
waveform L3D1, rand init 16.5

Analyze results for different FxLyDz architectures

Log-mel and waveform match performance if we remove fConv layer

No difference in performance when randomly initializing tConv layer

fConv layer requires ordering of features coming out of tConv layer
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Filterbank impulse responses
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Does it correspond to an auditory frequency scale?
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Dick Lyon on mel spectrograms:
“their amplitude scale is too logarithmic, and their frequency scale not
logarithmic enough”
Deep learning agrees: scale consistent with ERB spanning 3.8kHz
Except it adds ∼ 5 filters above 4kHz
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Single channel “brainograms”

gammatone

trained
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Multichannel WER breakdown (Sainath et al., 2015c)
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Larger improvements at lowest SNRs

Consistent improvements across range of reverb times and target
distances
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Compared to traditional beamforming (Sainath et al., 2015c)

Compare waveform model to two baselines
1 delay-and-sum (D+S) using oracle time difference of arrival (TDOA),

passed into 1ch waveform model
2 time-aligned multichannel (TAM) using oracle TDOA,

passed into multichannel waveform model

System 2ch 4ch 8ch

oracle D+S 22.8 22.5 22.4
oracle TAM 21.7 21.3 21.3
waveform 21.8 21.3 21.1

Despite lack of explicit localization waveform does better than D+S,
matches TAM

upper layers learn invariance to direction of arrival?

TAM learns filters similar to “uncompensated” waveform


	Review: Filterbanks
	Waveform CLDNN
	What do these things learn
	Multichannel waveform CLDNN
	Appendix
	Extra slides


